
streamsx Documentation
Release 1.14.14

IBMStreams

Apr 22, 2020

CONTENTS

1 Python Application API for Streams 3
1.1 streamsx.topology . 3
1.2 streamsx.topology.topology . 6
1.3 streamsx.topology.context . 11
1.4 streamsx.topology.schema . 11
1.5 streamsx.topology.state . 13
1.6 streamsx.topology.composite . 14
1.7 streamsx.topology.tester . 15
1.8 streamsx.topology.tester_runtime . 16
1.9 streamsx.ec . 17
1.10 streamsx.spl.op . 19
1.11 streamsx.spl.types . 22
1.12 streamsx.spl.toolkit . 23

2 SPL primitive Python operators 25
2.1 streamsx.spl.spl . 25

3 Streams Python REST API 35
3.1 streamsx.build . 35
3.2 streamsx.rest . 36
3.3 streamsx.rest_primitives . 37

4 Scripts 39
4.1 spl-python-extract . 39
4.2 streamsx-info . 40
4.3 streamsx-runner . 40
4.4 streamsx-sc . 44
4.5 streamsx-service . 46
4.6 streamsx-streamtool . 47

5 Environments 55
5.1 IBM Streaming Analytics service . 55
5.2 IBM Streams Python setup . 58
5.3 Indices and tables . 60

Python Module Index 61

Index 63

i

ii

streamsx Documentation, Release 1.14.14

Python APIs for use with IBM® Streaming Analytics service on IBM Cloud and on-premises IBM Streams.

CONTENTS 1

streamsx Documentation, Release 1.14.14

2 CONTENTS

CHAPTER

ONE

PYTHON APPLICATION API FOR STREAMS

Module that allows the definition and execution of streaming applications implemented in Python. Applications use
Python code to process tuples and tuples are Python objects.

SPL operators may also be invoked from Python applications to allow use of existing IBM Streams toolkits.

See topology

streamsx.topology Python application support for IBM Streams.
streamsx.topology.topology Streaming application definition.
streamsx.topology.context Context for submission and build of topologies.
streamsx.topology.schema Schemas for streams.
streamsx.topology.state Application state.
streamsx.topology.composite Composite transformations.
streamsx.topology.tester Testing support for streaming applications.
streamsx.topology.tester_runtime Runtime tester functionality.
streamsx.ec Access to the IBM Streams execution context.
streamsx.spl.op Integration of SPL operators.
streamsx.spl.types SPL type definitions.
streamsx.spl.toolkit SPL toolkit integration.

1.1 streamsx.topology

Python application support for IBM Streams.

1.1.1 Overview

IBM® Streams is an advanced analytic platform that allows user-developed applications to quickly ingest, analyze and
correlate information as it arrives from thousands of real-time sources. Streams can handle very high data throughput
rates, millions of events or messages per second.

With this API Python developers can build streaming applications that can be executed using IBM Streams, including
the processing being distributed across multiple computing resources (hosts or machines) for scalability.

IBM Streams is also available on IBM Cloud through IBM Streaming Analytics service

3

streamsx Documentation, Release 1.14.14

1.1.2 Creating Applications

Applications are created by declaring a flow graph contained in a Topology instance.

For details see streamsx.topology.topology .

1.1.3 Extensions

This package (streamsx) provides the core functionality to build streaming applications in Python for Streams.

Additional streamsx.* packages are available that provide adapters to external systems, analytics and streaming prim-
itives. This include:

• Apache Kafka integration - streamsx.kafka

• Database integration - streamsx.database

• Geospatial analytics- streamsx.geospatial

• IBM Event Streams integration - streamsx.eventstreams

• MQTT integration - streamsx.mqtt

• Cloud Object Storage integration - streamsx.objectstorage

• Streaming primitives - streamsx.standard

A full list of available packages is at : https://pypi.org/search?q=streamsx

1.1.4 Microservices

Publish-subscribe provides the abiltity to connect streams between independent IBM Streams applications regardless
of their implementation language. This allows a microservice approach where a Streams application acting as a service
publishes one or more streams. Subscriber services then subscribe to those streams without requiring any knowledge
of how a stream is published.

Publish-subscribe overview

Applications can publish streams to a topic name which can then be subscribed to by other applications (or even the
same application). Publish-subscribe works across applications written in SPL and those written using the Java/Scala
and Python application APIs.

A subscriber matches a publisher if their topic filter matches a publisher’s topic name and the stream type (schema) is
an exact match to that of the publisher. It is recommended that a single stream type is used for a topic name.

A topic is a string value (encoded with UTF-8), based upon the MQTT topic style

Topic names for publishing a stream:

• Must be at least one character long.

• Use / as a level separator, zero length topic levels are valid.

• Must not include wild card characters + and #.

• Must not include the Unicode character NULL (U+0000).

Topic filters for subscribing to streams:

• Must be at least one character long.

4 Chapter 1. Python Application API for Streams

https://pypi.org/project/streamsx.kafka/
https://pypi.org/project/streamsx.database/
https://pypi.org/project/streamsx.geospatial/
https://pypi.org/project/streamsx.eventstreams/
https://pypi.org/project/streamsx.mqtt/
https://pypi.org/project/streamsx.objectstorage/
https://pypi.org/project/streamsx.standard/
https://pypi.org/search?q=streamsx
https://developer.ibm.com/streamsdev/2016/09/02/analytics-microservice-architecture-with-ibm-streams/
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#appendix-a

streamsx Documentation, Release 1.14.14

• Use / as a level separator.

• Must not include the Unicode character NULL (U+0000).

• + is a single-level wildcard character that can be used at any level, but it must occupy the entire level. +, a/b/+,
+/b/+ and +/b are valid but a/b/c+ is not valid.

• # is a wildcard character that matches any number of levels including the parent and any number of child levels.
The multi-level wildcard character must be specified either on its own or following a topic level separator. In
either case it must be the last character specified in the topic filter. # and ‘a/b/#’ are valid but a/b/c# and a/#/c
are not valid.

Without a wildcard character a topic filter is an exact match for a topic name so that filter a/b/c only matches a/b/c.

Single-level filter (+) match examples are:

• filter + matches a and b but not a/b

• filter a/+ matches a/b, a/c and a/ but not a, b/c or a/b/c

• filter +/+ matches a/b, b/c, d/ and / but not a or a/b/c

Multi-level filter (#) match examples are:

• filter # matches every topic name such as a, b/c, //

• filter a/b/# matches a/b (parent), a/b/c, a/b/d and a/b/c/d

Note: A publish-subscribe match requires the stream type to match as well as the topic filter matching the topic name.

Publish-subscribe is a many to many relationship, any number of publishers can publish to the same topic and stream
type, and there can be many subscribers to a topic.

For example a telco ingest microservice/application may process Call Detail Records from network switches and
publish processed records on multiple topics, cdr/voice/normal, cdr/voice/dropped, cdr/sms, etc. by
publishing each processed stream with its own topic. Then a dropped call analytic microservice would subscribe to
the cdr/voice/dropped topic.

Publish-subscribe is dynamic, using IBM Streams dynamic connections, an application can be submitted that sub-
scribes to topics published by other already running applications. Once the new application has initialized, it will start
consuming tuples from published streams from existing applications. And any stream the new application publishes
will be subscribed to by existing applications where the topic and stream type matches.

An application only receives tuples that are published while it is connected, thus tuples are lost during a connection
failure.

A Python application publishes streams using publish() and subscribes using subscribe().

A stream of Python tuples can only be subscribed to by Python Streams applications. All other types (schemas)
can be subscribed to by any Streams application.

1.1. streamsx.topology 5

streamsx Documentation, Release 1.14.14

Module contents

1.2 streamsx.topology.topology

Streaming application definition.

1.2.1 Overview

IBM Streams is an advanced analytic platform that allows user-developed applications to quickly ingest, analyze and
correlate information as it arrives from thousands of real-time sources. Streams can handle very high data throughput
rates, millions of events or messages per second.

With this API Python developers can build streaming applications that can be executed using IBM Streams, including
the processing being distributed across multiple computing resources (hosts or machines) for scalability.

1.2.2 Topology

A Topology declares a graph of streams and operations against tuples (data items) on those streams.

After being declared, a Topology is submitted to be compiled into a Streams application bundle (sab file) and then
executed. The sab file is a self contained bundle that can be executed in a distributed Streams instance either using the
Streaming Analytics service on IBM Cloud or an on-premise IBM Streams installation.

The compilation step invokes the Streams compiler to produce a bundle. This effectively, from a Python point of view,
produces a runnable version of the Python topology that includes application specific Python C extensions to optimize
performance.

The bundle also includes any required Python packages or modules that were used in the declaration of the application,
excluding ones that are in a directory path containing site-packages.

The Python standard package tool pip uses a directory structure including site-packages when installing pack-
ages. Packages installed with pip can be included in the bundle with add_pip_package() when using a build
service. This avoids the requirement to have packages be preinstalled in cloud environments.

Local Python packages and modules containing callables used in transformations such as map() are copied into the
bundle from their local location. The addition of local packages to the bundle can be controlled with Topology.
include_packages and Topology.exclude_packages.

The Streams runtime distributes the application’s operations across the resources available in the instance.

Note: Topology represents a declaration of a streaming application that will be executed by a Streams instance as a
job, either using the Streaming Analytics service on IBM Cloud or an on-premises distributed instance. Topology does
not represent a running application, so an instance of Stream class does not contain the tuples, it is only a declaration
of a stream.

6 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.14

1.2.3 Stream

A Stream can be an infinite sequence of tuples, such as a stream for a traffic flow sensor. Alternatively, a stream can
be finite, such as a stream that is created from the contents of a file. When a streams processing application contains
infinite streams, the application runs continuously without ending.

A stream has a schema that defines the type of each tuple on the stream. The schema for a stream is either:

• Python - A tuple may be any Python object. This is the default when the schema is not explictly or implicitly
set.

• String - Each tuple is a Unicode string.

• Binary - Each tuple is a blob.

• Json - Each tuple is a Python dict that can be expressed as a JSON object.

• Structured - A stream that has a structured schema of a ordered list of attributes, with each attribute having a
fixed type (e.g. float64 or int32) and a name. The schema of a structured stream is defined using typed named
tuple or StreamSchema.

A stream’s schema is implictly dervied from type hints declared for the callable of the transform that produces it. For
example readings defined as follows would have a structured schema matching SensorReading

class SensorReading(typing.NamedTuple):
sensor_id: str
ts: int
reading: float

def reading_from_json(value:dict) -> SensorReading:
return SensorReading(value['id'], value['timestamp'], value['reading'])

topo = Topology()
json_readings = topo.source(HttpReadings()).as_json()
readings = json_readings.map(reading_from_json)

Deriving schemas from type hints can be disabled by setting the topology’s type_checking attribute to false, for
example this would change readings in the previous example to have generic Python object schema Python

topo = Topology()
topo.type_checking = False

1.2.4 Stream processing

Callables

A stream is processed to produce zero or more transformed streams, such as filtering a stream to drop unwanted tuples,
producing a stream that only contains the required tuples.

Streaming processing is per tuple based, as each tuple is submitted to a stream consuming operators have their pro-
cessing logic invoked for that tuple.

A functional operator is declared by methods on Stream such as map() which maps the tuples on its input stream to
tuples on its output stream. Stream uses a functional model where each stream processing operator is defined in terms
a Python callable that is invoked passing input tuples and whose return defines what output tuples are submitted for
downstream processing.

The Python callable used for functional processing in this API may be:

1.2. streamsx.topology.topology 7

streamsx Documentation, Release 1.14.14

• A Python lambda function.

• A Python function.

• An instance of a Python callable class.

For example a stream words containing only string objects can be processed by a filter() using a lambda func-
tion:

Filter the stream so it only contains words starting with py
pywords = words.filter(lambda word : word.startswith('py'))

When a callable has type hints they are used to:

• define the schema of the resulting transformation, see Stream.

• type checking the correctness of the transformation at topology declaration time.

For example if the callable defining the source had type hints that indicated it was an iterator of str objects then
the schema of the resultant stream would be String. If this source stream then underwent a Stream.map()
transform with a callable that had a type hint for its argument, a check is made to ensure that the type of the argument
is compatible with str.

Type hints are maintained through transforms regardless of resultant schema. For example a transform that has a return
type hint of int defines the schema as Python, but the type hint is retained even though the schema is generic. Thus
an error is raised at topology declaration time if a downstream transformation uses a callable with a type hint that is
incompatible with being passed an int.

How type hints are used is specific to each transformation, such as source(), map(), filter() etc.

Type checking can be disabled by setting the topology’s type_checking attribute to false.

When a callable is a lambda or defined inline (defined in the main Python script, a notebook or an interactive session)
then a serialized copy of its definition becomes part of the topology. The supported types of captured globals for these
callables is limited to avoid increasing the size of the application and serialization failures due non-serializable objects
directly or indirectly referenced from captured globals. The supported types of captured globals are constants (int,
str, float, bool, bytes, complex), modules, module attributes (e.g. classes, functions and variables defined in
a module), inline classes and functions. If a lambda or inline callable causes an exception due to unsupported global
capture then moving it to its own module is a solution.

Due to Python bug 36697 a lambda or inline callable can incorrect capture a global variable. For example an inline
class using a attribute of self.model will incorrectly capture the global model even if the global variable model
is never used within the class. To workaround this bug use attribute or variable names that do not shadow global
variables (e.g. self._model).

Due to issue 2336 an inline class using super() will cause an AttributeError at runtime. Workaround is to
call the super class’s method directly, for example replace this code:

class A(X):
def __init__(self):

super().__init__()

with:

class A(X):
def __init__(self):

X.__init__(self)

or move the class to a module.

8 Chapter 1. Python Application API for Streams

https://bugs.python.org/issue36697
https://github.com/IBMStreams/streamsx.topology/issues/2336

streamsx Documentation, Release 1.14.14

Stateful operations

Use of a class instance allows the operation to be stateful by maintaining state in instance attributes across invocations.

Note: For support with consistent region or checkpointing instances should ensure that the object’s state can be
pickled. See https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

Initialization and shutdown

Execution of a class instance effectively run in a context manager so that an instance’s __enter__ method is called
when the processing element containing the instance is initialized and its __exit__ method called when the process-
ing element is stopped. To take advantage of this the class must define both __enter__ and __exit__ methods.

Note: Since an instance of a class is passed to methods such as map() __init__ is only called when the topology
is declared, not at runtime. Initialization at runtime, such as opening connections, occurs through the __enter__
method.

Example of using __enter__ to create custom metrics:

import streamsx.ec as ec

class Sentiment(object):
def __init__(self):

pass

def __enter__(self):
self.positive_metric = ec.CustomMetric(self, "positiveSentiment")
self.negative_metric = ec.CustomMetric(self, "negativeSentiment")

def __exit__(self, exc_type, exc_value, traceback):
pass

def __call__(self):
pass

When an instance defines a valid __exit__ method then it will be called with an exception when:

• the instance raises an exception during processing of a tuple

• a data conversion exception is raised converting a value to an structutured schema tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing
processing element will be terminated.

1.2. streamsx.topology.topology 9

https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.14

Tuple semantics

Python objects on a stream may be passed by reference between callables (e.g. the value returned by a map callable
may be passed by reference to a following filter callable). This can only occur when the functions are executing in
the same PE (process). If an object is not passed by reference a deep-copy is passed. Streams that cross PE (process)
boundaries are always passed by deep-copy.

Thus if a stream is consumed by two map and one filter callables in the same PE they may receive the same object
reference that was sent by the upstream callable. If one (or more) callable modifies the passed in reference those
changes may be seen by the upstream callable or the other callables. The order of execution of the downstream
callables is not defined. One can prevent such potential non-deterministic behavior by one or more of these techniques:

• Passing immutable objects

• Not retaining a reference to an object that will be submitted on a stream

• Not modifying input tuples in a callable

• Using copy/deepcopy when returning a value that will be submitted to a stream.

Applications cannot rely on pass-by reference, it is a performance optimization that can be made in some situations
when stream connections are within a PE.

Application log and trace

IBM Streams provides application trace and log services which are accesible through standard Python loggers from
the logging module.

See Application log and trace.

SPL operators

In addition an application declared by Topology can include stream processing defined by SPL primitive or composite
operators. This allows reuse of adapters and analytics provided by IBM Streams, open source and third-party SPL
toolkits.

See streamsx.spl.op

1.2.5 Module contents

1.2.6 Module contents

Classes

PendingStream Pending stream connection.
Routing Defines how tuples are routed to channels in a parallel

region.
Sink Termination of a Stream.
Stream The Stream class is the primary abstraction within a

streaming application.
SubscribeConnection Connection mode between a subscriber and matching

publishers.
continues on next page

10 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.14

Table 2 – continued from previous page
Topology The Topology class is used to define data sources, and is

passed as a parameter when submitting an application.
View The View class provides access to a continuously up-

dated sampling of data items on a Stream after sub-
mission.

Window Declaration of a window of tuples on a Stream.

1.3 streamsx.topology.context

Context for submission and build of topologies.

1.3.1 Module contents

Functions

build Build a topology to produce a Streams application bun-
dle.

run Run a topology in a distributed Streams instance.
submit Submits a Topology (application) using the specified

context type.

Classes

ConfigParams Configuration options which may be used as keys in
submit() config parameter.

ContextTypes Submission context types.
JobConfig Job configuration.
SubmissionResult Passed back to the user after a call to submit.

1.4 streamsx.topology.schema

Schemas for streams.

1.4.1 Overview

A stream represents an unbounded flow of tuples with a declared schema so that each tuple on the stream complies
with the schema. A stream’s schema may be one of:

• StreamsSchema structured schema - a tuple is a sequence of attributes, and an attribute is a named value of
a specific type.

• Json a tuple is a JSON object.

• String a tuple is a string.

• Python a tuple is any Python object, effectively an untyped stream.

1.4. streamsx.topology.schema 11

streamsx Documentation, Release 1.14.14

1.4.2 Structured schemas

A structured schema is a sequence of attributes, and an attribute is a named value of a specific type. For example a
stream of sensor readings can be represented as a schema with three attributes sensor_id, ts and reading with
types of int64, int64 and float64 respectively.

This schema can be declared a number of ways:

Python 3.6:

class SensorReading(typing.NamedTuple):
sensor_id: int
ts: int
reading: float

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

SensorReading = typing.NamedTuple('SensorReading',
[('sensor_id', int), ('ts', int), ('reading', float)]

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

sensors = raw_readings.map(parse_sensor,
schema='tuple<int64 sensor_id, int64 ts, float64 reading>')

The supported types are defined by IBM Streams and are listed in StreamSchema.

Structured schemas provide type-safety and efficient network serialization when compared to passing a dict using
Python streams.

Streams with structured schemas can be interchanged with any IBM Streams application using publish() and
subscribe() maintaining type safety.

1.4.3 Defining a stream’s schema

Every stream within a Topology has defined schema. The schema may be defined explictly (for example map() or
subscribe()) or implicity (for example filter() produces a stream with the same schema as its input stream).

Explictly defining a stream’s schema is flexible and various types of values are accepted as the schema.

• Builtin types as aliases for common schema types:

– json (module) - for Json

– str - for String

– object - for Python

• Values of the enumeration CommonSchema

• An instance of typing.NamedTuple (Python 3)

• An instance of StreamSchema

• A string of the format tuple<...> defining the attribute names and types. See StreamSchema for details
on the format and types supported.

12 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.14

• A string containing a namespace qualified SPL stream type (e.g. com.ibm.streams.
geospatial::FlightPathEncounterTypes.Observation3D)

1.4.4 Module contents

Functions

is_common Is schema an common schema.

Classes

CommonSchema Common stream schemas for interoperability within
Streams applications.

StreamSchema Defines a schema for a structured stream.

1.5 streamsx.topology.state

Application state.

1.5.1 Overview

Stateful applications are ones that include callables that are classes and thus can maintain state as instance variables.

By default any state is reset to its initial state after a processing element (PE) restart. A restart may occur due to:

• a failure in the PE or its resource,

• a explicit PE restart request,

• or a parallel region width change (IBM Streams 4.3 or later)

The application or a portion of it may be configured to maintain state after a PE restart by one of two mechanisms.

• Consistent region. A consistent region is a subgraph where the states of callables become consistent by process-
ing all the tuples within defined points on a stream. After a PE restart all callables in the region are reset to the
last consistent point, so that the state of all callables represents the processing of the same input tuples to the
region.

– streamsx.topology.topology.Stream.set_consistent()

– ConsistentRegionConfig

– Consistent region overview

• Checkpointing, each stateful callable is checkpointed periodically and after a PE restart its callables are reset to
their most recent checkpointed state.

– streamsx.topology.topology.Topology.checkpoint_period

1.5. streamsx.topology.state 13

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/consistentregions.html

streamsx Documentation, Release 1.14.14

1.5.2 Stateful callables

Use of a class instance allows a transformation (for example map()) to be stateful by maintaining state in instance
attributes across invocations.

When the callable is in a consistent region or checkpointing then it is serialized using dill. The default serialization
may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This
is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See
https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the callable as __enter__ and __exit__ context manager methods then __enter__ is called after the object
has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as
open files or sockets.

1.5.3 Module contents

Classes

ConsistentRegionConfig A ConsistentRegionConfig configures a consis-
tent region.

1.6 streamsx.topology.composite

Composite transformations.

New in version 1.14.

1.6.1 Module contents

Classes

Composite Composite transformations support a single logical
transformation being a composite of one or more basic
transformations.

ForEach Abstract composite for each transformation.
Map Abstract composite map transformation.
Source Abstract composite source.

14 Chapter 1. Python Application API for Streams

https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.14

1.7 streamsx.topology.tester

Testing support for streaming applications.

1.7.1 Overview

Allows testing of a streaming application by creation conditions on streams that are expected to become valid during
the processing. Tester is designed to be used with Python’s unittest module.

A complete application may be tested or fragments of it, for example a sub-graph can be tested in isolation that takes
input data and scores it using a model.

Supports execution of the application on STREAMING_ANALYTICS_SERVICE, DISTRIBUTED or STANDALONE.

A Tester instance is created and associated with the Topology to be tested. Conditions are then created against
streams, such as a stream must receive 10 tuples using tuple_count().

Here is a simple example that tests a filter correctly only passes tuples with values greater than 5:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestSimpleFilter(unittest.TestCase):

def setUp(self):
Sets self.test_ctxtype and self.test_config
Tester.setup_streaming_analytics(self)

def test_filter(self):
Declare the application to be tested
topology = Topology()
s = topology.source([5, 7, 2, 4, 9, 3, 8])
s = s.filter(lambda x : x > 5)

Create tester and assign conditions
tester = Tester(topology)
tester.contents(s, [7, 9, 8])

Submit the application for test
If it fails an AssertionError will be raised.

tester.test(self.test_ctxtype, self.test_config)

A stream may have any number of conditions and any number of streams may be tested.

A local_check() is supported where a method of the unittest class is executed once the job becomes healthy. This
performs checks from the context of the Python unittest class, such as checking external effects of the application or
using the REST api to monitor the application.

A test fails-fast if any of the following occur:

• Any condition fails. E.g. a tuple failing a tuple_check().

• The local_check() (if set) raises an error.

• The job for the test:

– Fails to become healthy.

– Becomes unhealthy during the test run.

1.7. streamsx.topology.tester 15

streamsx Documentation, Release 1.14.14

– Any processing element (PE) within the job restarts.

A test timeouts if it does not fail but its conditions do not become valid. The timeout is not fixed as an absolute test run
time, but as a time since “progress” was made. This can allow tests to pass when healthy runs are run in a constrained
environment that slows execution. For example with a tuple count condition of ten, progress is indicated by tuples
arriving on a stream, so that as long as gaps between tuples are within the timeout period the test remains running until
ten tuples appear.

Note: The test timeout value is not configurable.

Note: The submitted job (application under test) has additional elements (streams & operators) inserted to implement
the conditions. These are visible through various APIs including the Streams console raw graph view. Such elements
are put into the Tester category.

Note: The package streamsx.testing provides nose plugins to provide control over tests without having to modify
their source code.

Changed in version 1.9: - Python 2.7 supported (except with Streaming Analytics service).

1.7.2 Module contents

Classes

Tester Testing support for a Topology.

1.8 streamsx.topology.tester_runtime

Runtime tester functionality.

1.8.1 Overview

Module containing runtime functionality for streamsx.topology.tester.

When test is executed any specified Condition instances are executed in the context of the application under test
(and not the unittest class instance). This module separates out the runtime execution code from the test definition
module tester.

16 Chapter 1. Python Application API for Streams

https://pypi.org/project/streamsx.testing/
https://pypi.org/project/nose

streamsx Documentation, Release 1.14.14

1.8.2 Module contents

Classes

Condition A condition for testing.

1.9 streamsx.ec

Access to the IBM Streams execution context.

1.9.1 Overview

This module (streamsx.ec) provides access to the execution context when Python code is running in a Streams appli-
cation.

A Streams application runs distributed or standalone.

Distributed

Distributed is used when an application is submitted to the Streaming Analytics service on IBM Cloud or a IBM
Streams distributed instance.

With distributed a running application is a job that contains one or more processing elements (PEs). A PE corresponds
to a Linux operating system process. The PEs in a job may be distributed across the resources (hosts) in the Streams
instance.

Standalone

Standalone is a mode where the complete application is run as a single PE (process) outside of a Streams instance.

Standalone is typically used for ad-hoc testing of an application.

1.9.2 Application log and trace

IBM Streams provides application trace and log services.

Application log

The Streams application log service is for application logging, where logging is defined as the recording of service-
ability information pertaining to application or operator events. The purpose of logging is to provide an administrator
with enough information to do problem determination for items they can potentially control. In general, very few
events are logged in the normal running scenario of an application or operator. Events pertinent to the failure or partial
failure of application runtime scenarios should be logged.

When running in distributed or standalone the com.ibm.streams.log logger has a handler that records messages to the
Streams application log service. The level of the logger and its handler are set to the configured application log level
at PE start up.

This logger and handler discard any message with level below INFO (20).

1.9. streamsx.ec 17

streamsx Documentation, Release 1.14.14

Python application code can log a message suitable for an administrator by using the com.ibm.streams.log logger or a
child logger that has logger.propagate evaulating to True. Example of logging a file exception:

try:
import numpy

except ImportError as e:
logging.getLogger('com.ibm.streams.log').error(e)
raise

Application code must not modify the com.ibm.streams.log logger, if additional handlers or different levels are required
a child logger should be used.

Application trace

The Streams application trace service is for application tracing, where tracing is defined as the recording of application
or operator internal events and data. The purpose of tracing is to allow application or operator developers to debug
their applications or operators.

When running in distributed or standalone the root logger has a handler that records messages to the Streams applica-
tion trace service. The level of the logger and its handler are set to the configured application trace level at PE start
up.

Python application code can trace a message using the root logger or a child logger that has logger.propagate
evaulating to True. Example of logging a trace message:

trace = logging.getLogger(__name__)

...

trace.info("Threshold set to %f", val)

Any existing logging performed by modules will automatically become Streams trace messages if the application is
using the logging package.

Application code must not modify the root logger, if additional handlers or different levels are required a child logger
should be used.

1.9.3 Execution Context

This module (streamsx.ec) provides access to the execution context when Python code is running in a Streams appli-
cation.

Access is only supported when running:

• Streams 4.2 or later

This module may be used by Python functions or classes used in a Topology or decorated SPL operators.

Most functionality is only available when a Python class is being invoked in a Streams application.

Changed in version 1.9: Support for Python 2.7

18 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.14

1.9.4 Module contents

Functions

channel Return the parallel region global channel number obj is
executing in.

domain_id Return the instance identifier.
get_application_configuration Get a named application configuration.
get_application_directory Get the application directory.
instance_id Return the instance identifier.
is_active Tests is code is active within a IBM Streams execution

context.
is_standalone Is the execution context standalone.
job_id Return the job identifier.
local_channel Return the parallel region local channel number obj is

executing in.
local_max_channels Return the local maximum number of channels for the

parallel region obj is executing in.
max_channels Return the global maximum number of channels for the

parallel region obj is executing in.
pe_id Return the PE identifier.
shutdown Return the processing element (PE) shutdown event.

Classes

CustomMetric Create a custom metric.
MetricKind Enumeration for the kind of a metric.

1.10 streamsx.spl.op

Integration of SPL operators.

1.10.1 Invoking SPL Operators

IBM Streams supports Stream Processing Language (SPL), a domain specific language for streaming analytics. SPL
creates an application by building a graph of operator invocations. These operators are declared in an SPL toolkit.

SPL streams have a structured schema, such as tuple<rstring id, timestamp ts, float64 value>
for a sensor reading with a sensor identifier, timestamp and value. A schema is defined using StreamSchema.

A Python topology application can take advantage of SPL operators by using streams with structured schemas. A
stream of Python objects can be converted to a structured stream using map() with the schema parameter set:

s is stream of Python objects representing a sensor
s = ...

map s to a structured stream using a lambda function
for each sensor reading r a Python tuple is created
with the required values matching the order of the

(continues on next page)

1.10. streamsx.spl.op 19

streamsx Documentation, Release 1.14.14

(continued from previous page)

structured schema.
s2 = s.map(lambda r : (r.sensor_id, r.reading_time, r.reading),

schema='tuple<rstring id, timestamp ts, float64 value>'

An SPL operator is invoked in an application by creating an instance of:

• Invoke - Invocation of an arbitrary SPL operator.

• Source - Invocation of an SPL source operator with one input port.

• Map - Invocation of an SPL map operator with one input port and one output port.

• Sink - Invocation of an SPL sink operator with one output port.

In SPL, operator invocation supports a number of clauses that are supported in Python.

Values for operator clauses

When an operator clause requires a value, the value may be passed as a constant, an input attribute (passed using the
attribute method of the invocation), or an arbitrary SPL expression (passed as a string or an Expression). Because
a string is interpreted as an SPL expression, a string constant should be passed by enclosing the quoted string in outer
quotes (for example, ‘“a string constant”’).

SPL is strictly typed so when passing a constant as a value the value may need to be strongly typed.

• bool, int, float and str values map automatically to SPL boolean, int32, float64 and rstring respectively.

• Enum values map to an operator custom literal using the symbolic name of the value. For custom literals only
the symbolic name needs to match a value expected by the operator, the class name and other values are arbitrary.

• The module streamsx.spl.types provides functions to create typed SPL expressions from values.

An optional type may be set to SPL null by passing either Python None or the value returned from null().

Param clause

Operator parameterization is through operator parameters that configure and modify the operator for the specific
application.

Parameters are passed as a dict containing the parameter names and their values (see Values for operator clauses).

Examples

To invoke a Beacon operator from the SPL standard toolkit producing 100 tuples at the rate of two per second:

schema = StreamSchema('tuple<uint64 seq>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema,

params = {'iterations':100, 'period':0.5})

To use an IntEnum to pass a custom literal to the Parse operator:

from enum import IntEnum

class DataFormats(IntEnum):
csv = 0
txt = 1

...

(continues on next page)

20 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.14

(continued from previous page)

params['format'] = DataFormats.csv

To create a count parameter of type uint64 for the SPL DeDuplicate operator:

params['count'] = streamsx.spl.types.uint64(20)

After the instance representing the operator invocation has been created, additional parameters may be added through
the params attribute. If the value is an expression that is only valid in the context of the operator invocation then the
parameter must be added after the operator invocation has been created.

For example, the Filter operator uses an expression that is usually dependent on the context, filtering tuples based
upon their attribute values:

fs = op.Map('spl.relational::Filter', beacon)
fs.params['filter'] = fs.expression('seq % 2ul == 0ul')

Output clause

The operator output clause defines the values of attributes on outgoing tuples on the operator invocation’s output ports.

When a tuple is submitted by an operator invocation each of its attributes is set in one of three ways:

• By the operator based upon its state and input tuples. For example, a US ZIP code operator might set the zipcode
attribute based upon its lookup of the ZIP code from the address details in the input tuple.

• By the operator implicitly setting output attributes from matching input attributes when those attributes have
not been explicitly set elsewhere. Many streaming operators implicitly set output attributes to allow attributes to
flow through the operator without any explicit coding. This only occurs when an output attribute is not explicitly
set by the operator, or the output clause, and the input tuple has an attribute that matches the output attribute
(same name and type, or same name and same type as the underlying type of an output attribute with an optional
type). For example, in the US ZIP code operator, if the output tuple included attributes of rstring city,
rstring state that matched input attributes, then they would be implicitly copied from the input tuple to
the output tuple.

• By an output clause in the operator invocation. In this case the application invoking the operator is explicitly
setting attributes using SPL expressions. An operator may provide output functions that return values based
upon the operator’s state and input tuples. For example, the US ZIP code operator might provide a ZIPCode()
output function rather than explicitly setting an output attribute. Then the application is free to use any attribute
name to represent the ZIP code in its output tuple.

In Python an output tuple attribute is set by creating an attribute in the operator invocation instance that is set to a
return from the output method. The attribute value passed to the output method is passed as described in Values for
operator clauses.

For example, invoking an SPL Beacon operator using an output function to set the sequence number of a tuple and an
SPL expression to set the timestamp:

schema = StreamSchema('tuple<uint64 seq, timestamp ts>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema, params = {'period':0.1})

Set the seq attribute using an output function provided by Beacon
beacon.seq = beacon.output('IterationCount()')

Set the ts attribute using an SPL function that returns the current time
beacon.ts = beacon.output('getTimestamp()')

1.10. streamsx.spl.op 21

streamsx Documentation, Release 1.14.14

See also:

Streams Processing Language (SPL) Reference Reference documentation.

Developing Streams applications Developing Streams applications.

Operator invocations Operator invocations from the SPL reference documentation.

1.10.2 Module contents

Functions

main_composite Wrap a main composite invocation as a Topology.

Classes

Expression An SPL expression.
Invoke Declaration of an invocation of an SPL operator in a

Topology.
Map Declaration of an invocation of an SPL map operator.
Sink Declaration of an invocation of an SPL sink operator.
Source Declaration of an invocation of an SPL source operator.

1.11 streamsx.spl.types

SPL type definitions.

1.11.1 Overview

SPL is strictly typed, thus when invoking SPL operators using classes from streamsx.spl.op then any parameters
must use the SPL type required by the operator.

1.11.2 Module contents

Functions

float32 Create an SPL float32 value.
float64 Create an SPL float64 value.
int16 Create an SPL int16 value.
int32 Create an SPL int32 value.
int64 Create an SPL int64 value.
int8 Create an SPL int8 value.
null Return an SPL null.
rstring Create an SPL rstring value.
uint16 Create an SPL uint16 value.
uint32 Create an SPL uint32 value.

continues on next page

22 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.dev.doc/doc/dev-container.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/operatorinvocations.html

streamsx Documentation, Release 1.14.14

Table 15 – continued from previous page
uint64 Create an SPL uint64 value.
uint8 Create an SPL uint8 value.

Classes

Timestamp SPL native timestamp type with nanosecond resolution.

1.12 streamsx.spl.toolkit

SPL toolkit integration.

1.12.1 Overview

SPL operators are defined by an SPL toolkit. When a Topology contains invocations of SPL operators, their defining
toolkit must be made known using add_toolkit().

Toolkits shipped with the IBM Streams product under $STREAMS_INSTALL/toolkits are implictly known and
must not be added through add_toolkit.

1.12.2 Module contents

Functions

add_toolkit Add an SPL toolkit to a topology.
add_toolkit_dependency Add a version dependency on an SPL toolkit to a topol-

ogy.

1.12. streamsx.spl.toolkit 23

streamsx Documentation, Release 1.14.14

24 Chapter 1. Python Application API for Streams

CHAPTER

TWO

SPL PRIMITIVE PYTHON OPERATORS

SPL primitive Python operators provide the ability to perform tuple processing using Python in an SPL application.

A Python function or class is simply turned into an SPL primitive operator through provided decorators.

SPL (Streams Processing Language) is a domain specific language for streaming analytics supported by Streams.

streamsx.spl.spl SPL Python primitive operators.

2.1 streamsx.spl.spl

SPL Python primitive operators.

2.1.1 Overview

SPL primitive operators that call a Python function or class methods are created by decorators provided by this module.

The name of the function or callable class becomes the name of the operator.

A decorated function is a stateless operator while a decorated class is an optionally stateful operator.

These are the supported decorators that create an SPL operator:

• @spl.source - Creates a source operator that produces tuples.

• @spl.filter - Creates a operator that filters tuples.

• @spl.map - Creates a operator that maps input tuples to output tuples.

• @spl.for_each - Creates a operator that terminates a stream processing each tuple.

• @spl.primitive_operator - Creates an SPL primitive operator that has an arbitrary number of input and
output ports.

Decorated functions and classes must be located in the directory opt/python/streams in the SPL toolkit. Each
module in that directory will be inspected for operators during extraction. Each module defines the SPL namespace
for its operators by the function spl_namespace, for example:

from streamsx.spl import spl

def spl_namespace():
return 'com.example.ops'

@spl.map()
(continues on next page)

25

streamsx Documentation, Release 1.14.14

(continued from previous page)

def Pass(*tuple_):
return tuple_

creates a pass-through operator com.example.ops::Pass.

SPL primitive operators are created by executing the extraction script spl-python-extract against the SPL toolkit. Once
created the operators become part of the toolkit and may be used like any other SPL operator.

2.1.2 Python classes as SPL operators

Overview

Decorating a Python class creates a stateful SPL operator where the instance fields of the class are the operator’s state.
An instance of the class is created when the SPL operator invocation is initialized at SPL runtime. The instance of the
Python class is private to the SPL operator and is maintained for the lifetime of the operator.

If the class has instance fields then they are the state of the operator and are private to each invocation of the operator.

If the __init__ method has parameters beyond the first self parameter then they are mapped to operator parameters.
Any parameter that has a default value becomes an optional parameter to the SPL operator. Parameters of the form
*args and **kwargs are not supported.

Warning: Parameter names must be valid SPL identifers, SPL identifiers start with an ASCII letter or underscore,
followed by ASCII letters, digits, or underscores. The name also must not be an SPL keyword.

Parameter names suppress and include are reserved.

The value of the operator parameters at SPL operator invocation are passed to the __init__ method. This is equivalent
to creating an instance of the class passing the operator parameters into the constructor.

For example, with this decorated class producing an SPL source operator:

@spl.source()
class Range(object):

def __init__(self, stop, start=0):
self.start = start
self.stop = stop

def __iter__(self):
return zip(range(self.start, self.stop))

The SPL operator Range has two parameters, stop is mandatory and start is optional, defaulting to zero. Thus the SPL
operator may be invoked as:

// Produces the sequence of values from 0 to 99
//
// Creates an instance of the Python class
// Range using Range(100)
//
stream<int32 seq> R = Range() {

param
stop: 100;

}

or both operator parameters can be set:

26 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.14

// Produces the sequence of values from 50 to 74
//
// Creates an instance of the Python class
// Range using Range(75, 50)
//
stream<int32 seq> R = Range() {

param
start: 50;
stop: 75;

}

Operator state

Use of a class allows the operator to be stateful by maintaining state in instance attributes across invocations (tuple
processing).

When the operator is in a consistent region or checkpointing then it is serialized using dill. The default serialization
may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This
is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See
https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the class has __enter__ and __exit__ context manager methods then __enter__ is called after the instance
has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as
open files or sockets.

Operator initialization & shutdown

Execution of an instance for an operator effectively run in a context manager so that an instance’s __enter__method
is called when the processing element containing the operator is initialized and its __exit__ method called when
the processing element is stopped. To take advantage of this the class must define both __enter__ and __exit__
methods.

Note: Initialization such as opening files should be in __enter__ in order to support stateful operator restart &
checkpointing.

Example of using __enter__ and __exit__ to open and close a file:

import streamsx.ec as ec

@spl.map()
class Sentiment(object):

def __init__(self, name):
self.name = name
self.file = None

def __enter__(self):
self.file = open(self.name, 'r')

def __exit__(self, exc_type, exc_value, traceback):
if self.file is not None:

self.file.close()

def __call__(self):
pass

2.1. streamsx.spl.spl 27

https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.14

When an instance defines a valid __exit__ method then it will be called with an exception when:

• the instance raises an exception during processing of a tuple

• a data conversion exception is raised converting a Python value to an SPL tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing
processing element will be terminated.

Application log and trace

IBM Streams provides application trace and log services which are accesible through standard Python loggers from
the logging module.

See Application log and trace.

2.1.3 Python functions as SPL operators

Decorating a Python function creates a stateless SPL operator. In SPL terms this is similar to an SPL Custom operator,
where the code in the Python function is the custom code. For operators with input ports the function is called for each
input tuple, passing a Python representation of the SPL input tuple. For an SPL source operator the function is called
to obtain an iterable whose contents will be submitted to the output stream as SPL tuples.

Operator parameters are not supported.

An example SPL sink operator that prints each input SPL tuple after its conversion to a Python tuple:

@spl.for_each()
def PrintTuple(*tuple_):

"Print each tuple to standard out."
print(tuple_, flush=True)

2.1.4 Processing SPL tuples in Python

SPL tuples are converted to Python objects and passed to a decorated callable.

Overview

For each SPL tuple arriving at an input port a Python function is called with the SPL tuple converted to Python values
suitable for the function call. How the tuple is passed is defined by the tuple passing style.

Tuple Passing Styles

An input tuple can be passed to Python function using a number of different styles:

• dictionary

• tuple

• attributes by name not yet implemented

• attributes by position

28 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.14

Dictionary

Passing the SPL tuple as a Python dictionary is flexible and makes the operator independent of any schema. A
disadvantage is the reduction in code readability for Python function by not having formal parameters, though getters
such as tuple['id'] mitigate that to some extent. If the function is general purpose and can derive meaning from
the keys that are the attribute names then **kwargs can be useful.

When the only function parameter is **kwargs (e.g. def myfunc(**tuple_):) then the passing style is
dictionary.

All of the attributes are passed in the dictionary using the SPL schema attribute name as the key.

Tuple

Passing the SPL tuple as a Python tuple is flexible and makes the operator independent of any schema but is brittle
to changes in the SPL schema. Another disadvantage is the reduction in code readability for Python function by not
having formal parameters. However if the function is general purpose and independent of the tuple contents *args
can be useful.

When the only function parameter is *args (e.g. def myfunc(*tuple_):) then the passing style is tuple.

All of the attributes are passed as a Python tuple with the order of values matching the order of the SPL schema.

Attributes by name

(not yet implemented)

Passing attributes by name can be robust against changes in the SPL scheme, e.g. additional attributes being added in
the middle of the schema, but does require that the SPL schema has matching attribute names.

When attributes by name is used then SPL tuple attributes are passed to the function by name for formal param-
eters. Order of the attributes and parameters need not match. This is supported for function parameters of kind
POSITIONAL_OR_KEYWORD and KEYWORD_ONLY.

If the function signature also contains a parameter of the form **kwargs (VAR_KEYWORD) then any attributes not
bound to formal parameters are passed in its dictionary using the SPL schema attribute name as the key.

If the function signature also contains an arbitrary argument list *args then any attributes not bound to formal
parameters or to **kwargs are passed in order of the SPL schema.

If there are only formal parameters any non-bound attributes are not passed into the function.

Attributes by position

Passing attributes by position allows the SPL operator to be independent of the SPL schema but is brittle to changes in
the SPL schema. For example a function expecting an identifier and a sensor reading as the first two attributes would
break if an attribute representing region was added as the first SPL attribute.

When attributes by position is used then SPL tuple attributes are passed to the function by position for formal param-
eters. The first SPL attribute in the tuple is passed as the first parameter. This is supported for function parameters of
kind POSITIONAL_OR_KEYWORD.

If the function signature also contains an arbitrary argument list *args (VAR_POSITIONAL) then any attributes not
bound to formal parameters are passed in order of the SPL schema.

The function signature must not contain a parameter of the form **kwargs (VAR_KEYWORD).

2.1. streamsx.spl.spl 29

streamsx Documentation, Release 1.14.14

If there are only formal parameters any non-bound attributes are not passed into the function.

The SPL schema must have at least the number of positional arguments the function requires.

Selecting the style

For signatures only containing a parameter of the form *args or **kwargs the style is implicitly defined:

• def f(**tuple_) - dictionary - tuple_ will contain a dictionary of all of the SPL tuple attribute’s values
with the keys being the attribute names.

• def f(*tuple_) - tuple - tuple_ will contain all of the SPL tuple attribute’s values in order of the SPL
schema definition.

Otherwise the style is set by the style parameter to the decorator, defaulting to attributes by name. The style value
can be set to:

• 'name' - attributes by name (the default)

• 'position' - attributes by position

Examples

These examples show how an SPL tuple with the schema and value:

tuple<rstring id, float64 temp, boolean increase>
{id='battery', temp=23.7, increase=true}

is passed into a variety of functions by showing the effective Python call and the resulting values of the function’s
parameters.

Dictionary consuming all attributes by **kwargs:

@spl.map()
def f(**tuple_)

pass
f({'id':'battery', 'temp':23.7, 'increase': True})
tuple_={'id':'battery', 'temp':23.7, 'increase':True}

Tuple consuming all attributes by *args:

@spl.map()
def f(*tuple_)

pass
f('battery', 23.7, True)
tuple_=('battery',23.7, True)

Attributes by name consuming all attributes:

@spl.map()
def f(id, temp, increase)

pass
f(id='battery', temp=23.7, increase=True)
id='battery'
temp=23.7
increase=True

Attributes by name consuming a subset of attributes:

30 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.14

@spl.map()
def f(id, temp)

pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7

Attributes by name consuming a subset of attributes in a different order:

@spl.map()
def f(increase, temp)

pass
f(temp=23.7, increase=True)
increase=True
temp=23.7

Attributes by name consuming id by name and remaining attributes by **kwargs:

@spl.map()
def f(id, **tuple_)

pass
f(id='battery', {'temp':23.7, 'increase':True})
id='battery'
tuple_={'temp':23.7, 'increase':True}

Attributes by name consuming id by name and remaining attributes by *args:

@spl.map()
def f(id, *tuple_)

pass
f(id='battery', 23.7, True)
id='battery'
tuple_=(23.7, True)

Attributes by position consuming all attributes:

@spl.map(style='position')
def f(key, value, up)

pass
f('battery', 23.7, True)
key='battery'
value=23.7
up=True

Attributes by position consuming a subset of attributes:

@spl.map(style='position')
def f(a, b)

pass
f('battery', 23.7)
a='battery'
b=23.7

Attributes by position consuming id by position and remaining attributes by *args:

@spl.map(style='position')
def f(key, *tuple_)

(continues on next page)

2.1. streamsx.spl.spl 31

streamsx Documentation, Release 1.14.14

(continued from previous page)

pass
f('battery', 23.7, True)
key='battery'
tuple_=(23.7, True)

In all cases the SPL tuple must be able to provide all parameters required by the function. If the SPL schema is
insufficient then an error will result, typically an SPL compile time error.

The SPL schema can provide a subset of the formal parameters if the remaining attributes are optional (having a
default).

Attributes by name consuming a subset of attributes with an optional parameter not matched by the schema:

@spl.map()
def f(id, temp, pressure=None)

pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7
pressure=None

2.1.5 Submission of SPL tuples from Python

The return from a decorated callable results in submission of SPL tuples on the associated outut port.

A Python function must return:

• None

• a Python tuple

• a Python dictionary

• a list containing any of the above.

None

When None is return then no tuple will be submitted to the operator output port.

Python tuple

When a Python tuple is returned it is converted to an SPL tuple and submitted to the output port.

The values of a Python tuple are assigned to an output SPL tuple by position, so the first value in the Python tuple is
assigned to the first attribute in the SPL tuple:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,b,a+b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple

(continues on next page)

32 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.14

(continued from previous page)

x is set to: x
y is set to: y
z is set to: x+y

The returned tuple may be sparse, any attribute value in the tuple that is None will be set to their SPL default or copied
from a matching attribute in the input tuple (same name and type, or same name and same type as the underlying type
of an output attribute with an optional type), depending on the operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,None,a+b)

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: x+y

When a returned tuple has fewer values than attributes in the SPL output schema the attributes not set by the Python
function will be set to their SPL default or copied from a matching attribute in the input tuple (same name and type,
or same name and same type as the underlying type of an output attribute with an optional type), depending on the
operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return a,

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: 0 (default int32 value)

When a returned tuple has more values than attributes in the SPL output schema then the additional values are ignored:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,b,a+b,a/b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple
x is set to: x
y is set to: y
z is set to: x+y
#
The fourth value in the tuple a/b = x/y is ignored.

2.1. streamsx.spl.spl 33

streamsx Documentation, Release 1.14.14

Python dictionary

A Python dictionary is converted to an SPL tuple for submission to the associated output port. An SPL attribute is set
from the dictionary if the dictionary contains a key equal to the attribute name. The value is used to set the attribute,
unless the value is None.

If the value in the dictionary is None, or no matching key exists, then the attribute value is set to its SPL default
or copied from a matching attribute in the input tuple (same name and type, or same name and same type as the
underlying type of an output attribute with an optional type), depending on the operator kind.

Any keys in the dictionary that do not map to SPL attribute names are ignored.

Python list

When a list is returned, each value is converted to an SPL tuple and submitted to the output port, in order of the list
starting with the first element (position 0). If the list contains None at an index then no SPL tuple is submitted for that
index.

The list must only contain Python tuples, dictionaries or None. The list can contain a mix of valid values.

The list may be empty resulting in no tuples being submitted.

2.1.6 Module contents

Functions

extracting Is a module being loaded by
spl-python-extract.

ignore Decorator to ignore a Python function.

Classes

PrimitiveOperator Primitive operator super class.
filter Decorator that creates a filter SPL operator from a

callable class or function.
for_each Creates an SPL operator with a single input port.
input_port Declare an input port and its processor method.
map Decorator to create a map SPL operator from a callable

class or function.
primitive_operator Creates an SPL primitive operator with an arbitrary

number of input ports and output ports.
source Create a source SPL operator from an iterable.

34 Chapter 2. SPL primitive Python operators

CHAPTER

THREE

STREAMS PYTHON REST API

Module that allows interaction with an running Streams instance or service through HTTPS REST APIs.

streamsx.build REST API bindings for IBM® Streams Cloud Pak for
Data build service.

streamsx.rest REST API bindings for IBM® Streams & Streaming
Analytics service.

streamsx.rest_primitives Primitive objects for REST bindings.

3.1 streamsx.build

REST API bindings for IBM® Streams Cloud Pak for Data build service.

3.1.1 Streams Build REST API

The REST Build API provides programmatic support for creating, submitting and managing Streams builds. You can
use the REST Build API from any application that can establish an HTTPS connection to the server that is running the
build service. The current support includes only methods for managing toolkits in the build service.

Cloud Pak for Data

of_endpoint() is the entry point to using the Streams Build REST API bindings, returning an BuildService.

See also:

IBM Streaming Analytics service

3.1.2 Module contents

Classes

BuildService IBM Streams build service.

35

streamsx Documentation, Release 1.14.14

3.2 streamsx.rest

REST API bindings for IBM® Streams & Streaming Analytics service.

3.2.1 Streams REST API

The Streams REST API provides programmatic access to configuration and status information for IBM Streams objects
such as domains, instances, and jobs.

IBM Cloud Pak for Data (Streams 5)

Integrated configuration within project

of_service() is the entry point to using the Streams REST API bindings, returning an Instance. The config-
uration required to connect is obtained from ipcd_util.get_service_details passing in the IBM Streams
service instance name.

Integrated & standalone configurations

of_endpoint() is the entry point to using the Streams REST API bindings, returning an Instance.

IBM Streams On-premises (4.2, 4.3)

StreamsConnection is the entry point to using the Streams REST API bindings. Through its functions and the
returned objects status information can be obtained for items such as instances and jobs.

3.2.2 Streaming Analytics REST API

You can use the Streaming Analytics REST API to manage your service instance and the IBM Streams jobs that
are running on the instance. The Streaming Analytics REST API is accessible from IBM Cloud applications that are
bound to your service instance or from an application outside of IBM Cloud that is configured with the service instance
VCAP information.

StreamingAnalyticsConnection is the entry point to using the Streaming Analytics REST API. The function
get_streaming_analytics() returns a StreamingAnalyticsService instance which is the wrapper
around the Streaming Analytics REST API. This API allows functions such as start and stop the service instance.

In addition StreamingAnalyticsConnection extends from StreamsConnection and thus provides access to the
Streams REST API for the service instance.

See also:

IBM Streams REST API overview Reference documentation for the Streams REST API.

Streaming Analytics REST API Reference documentation for the Streaming Analytics service REST API.

See also:

IBM Streaming Analytics service

36 Chapter 3. Streams Python REST API

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.restapi.doc/doc/restapis.html
https://console.ng.bluemix.net/apidocs/220-streaming-analytics?&language=node#introduction

streamsx Documentation, Release 1.14.14

3.2.3 Module contents

Classes

StreamingAnalyticsConnection Creates a connection to a running Streaming Analytics
service and exposes methods to retrieve the state of the
service and its instance.

StreamsConnection Creates a connection to a running distributed IBM
Streams instance and exposes methods to retrieve the
state of that instance.

3.3 streamsx.rest_primitives

Primitive objects for REST bindings.

3.3.1 Overview

Contains classes representing primitive Streams objects, such as Instance, Job, PE, etc.

3.3.2 Module contents

Classes

ActiveService Domain or instance service.
ActiveVersion Contains IBM Streams installation information
ApplicationBundle Application bundle tied to an instance.
ApplicationConfiguration An application configuration.
Domain IBM Streams domain.
ExportedStream Stream exported stream by a job.
Host Resource in a Streams domain or instance.
ImportedStream Stream imported by a job.
Installation IBM Streams installation.
Instance IBM Streams instance.
Job A running streams application.
JobGroup A job group definition.
Metric Streams custom or system metric.
Operator An operator invocation within a job.
OperatorConnection Connection between operators.
OperatorInputPort Operator input port.
OperatorOutputPort Operator output port.
PE Processing element (PE) within a job.
PEConnection Stream connection between two PEs.
PublishedTopic Metadata for a published topic.
Resource A resource available to a IBM Streams domain.
ResourceAllocation A resource that is allocated to an IBM Streams instance.
ResourceTag Resource tag defined in a Streams domain

continues on next page

3.3. streamsx.rest_primitives 37

streamsx Documentation, Release 1.14.14

Table 4 – continued from previous page
RestResource HTTP REST resource identifier.
StreamingAnalyticsService Streaming Analytics service running on IBM Cloud.
Toolkit IBM Streams toolkit.
View View on a stream.
ViewItem A stream tuple in view.

38 Chapter 3. Streams Python REST API

CHAPTER

FOUR

SCRIPTS

The streamsx package provides a number of command line scripts.

4.1 spl-python-extract

4.1.1 Overview

Extracts SPL Python primitive operators from decorated Python classes and functions.

Executing this script against an SPL toolkit creates the SPL primitive operator meta-data required by the SPL compiler
(sc).

4.1.2 Usage

spl-python-extract [-h] -i DIRECTORY [--make-toolkit] [-v]

Extract SPL operators from decorated Python classes and functions.

optional arguments:
-h, --help show this help message and exit
-i DIRECTORY, --directory DIRECTORY

Toolkit directory
--make-toolkit Index toolkit using spl-make-toolkit
-v, --verbose Print more diagnostics

4.1.3 SPL Python primitive operators

SPL operators that call a Python function or callable class are created by decorators provided by the streamsx package.

To create SPL operators from Python functions or classes one or more Python modules are created in the opt/
python/streams directory of an SPL toolkit.

spl-python-extract is a Python script that creates SPL operators from Python functions and classes contained
in modules under opt/python/streams.

The resulting operators embed the Python runtime to allow stream processing using Python.

Details on how to implement SPL Python primitive operators see streamsx.spl.spl.

39

streamsx Documentation, Release 1.14.14

4.2 streamsx-info

4.2.1 Overview

Information about streamsx package and environment.

Prints to standard out information about the streamsx package and environment variables used to support Python in
IBM Streams and Streaming Analytics service.

A Python warning is issued if a mismatch is detected between the installed streamsx package and its modules. This is
typically due to having a different version of the modules accessible through the environment variable PYTHONPATH.

Warning: When using the streamsx package ensure that the environment variable PYTHONPATH does not in-
clude a path ending with com.ibm.streamsx.topology/opt/python/packages. The IBM Streams
environment configuration script streamsprofile.sh modifies or sets PYTHONPATH to include the Python
support from the SPL topology toolkit shipped with the product. This was to support Python before the streamsx
package was available. The recommendation is to unset PYTHONPATH or modify it not to include the path to the
topology toolkit.

Output is subject to change in the order and information displayed. Intended as an ad-hoc tool to help diagnose issues
with streamsx.

Script may also be run as Python module:

python -m streamsx.scripts.info

4.2.2 Usage

usage: streamsx-info [-h]

Prints support information about streamsx package and environment.

optional arguments:
-h, --help show this help message and exit

4.3 streamsx-runner

4.3.1 Overview

Submits or builds a Streams application to the Streaming Analytics service.

The application to be submitted can be:

• A Python application defined through Topology using the --topology flag.

• An SPL application (main composite) using the --main-composite flag.

• A Streams application bundle (sab file) using the --bundle flag.

40 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

4.3.2 Streaming Analytics service

The Streaming Analytics service is defined by:

• Service name - --service-name defaulting to environment variable
STREAMING_ANALYTICS_SERVICE_NAME. The service name must exist in the vcap services.

• Vcap services - Environment variable VCAP_SERVICES containing JSON representation of the service defini-
tions or a file name containing the service definitions.

4.3.3 Job submission

Job submission occurs unless --create-bundle is set.

4.3.4 Bundle creation

When -create-bundle is specified with -main-composite or --topology then a Streams application bun-
dle (sab file) is created.

If environment variable STREAMS_INSTALL is set the the build is local otherwise the build occurs in the IBM Cloud
using the Streaming Analytics service.

When STREAMS_INSTALL is not set then streamsx-runner can be executed with no local Streams install.

When compiling an SPL application (--main-composite) then the path to the application toolkit containing the
main composite must be listed with --toolkits.

Any other required local toolkits must be listed with with --toolkits.

4.3.5 Usage

streamsx-runner [-h] [--service-name SERVICE_NAME] | [--create-bundle]
(--topology TOPOLOGY | --main-composite MAIN_COMPOSITE | --bundle BUNDLE)
[--toolkits TOOLKITS [TOOLKITS ...]] [--job-name JOB_NAME]
[--preload] [--trace {error,warn,info,debug,trace}]
[--submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...

→˓]]
[--job-config-overlays file]

Execute a Streams application using a Streaming Analytics service.

optional arguments:
-h, --help show this help message and exit
--service-name SERVICE_NAME

Submit to Streaming Analytics service
--create-bundle Create a bundle (sab file). No job submission occurs.
--topology TOPOLOGY Topology to call
--main-composite MAIN_COMPOSITE

SPL main composite (namespace::composite_name)
--bundle BUNDLE Streams application bundle (sab file) to submit to

service

Build options:
Application build options

(continues on next page)

4.3. streamsx-runner 41

streamsx Documentation, Release 1.14.14

(continued from previous page)

--toolkits TOOLKITS [TOOLKITS ...]
SPL toolkit path containing the main composite and any
other required SPL toolkit paths.

Job options:
Job configuration options

--job-name JOB_NAME Job name
--preload Preload job onto all resources in the instance
--trace {error,warn,info,debug,trace}

Application trace level
--submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...], -p

→˓SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...]
Submission parameters as name=value pairs

--job-config-overlays file
Path to file containing job configuration overlays
JSON. Overrides any job configuration set by the
application.

4.3.6 Submitting to Streaming Analytics service

An application is submitted to a Streaming Analytics service using --service-name SERVICE_NAME. The
named service must exist in the VCAP services definition pointed to by the VCAP_SERVICES environment vari-
able.

The application is submitted as source (except --bundle) and compiled into a Streams application bundle (sab file)
using the build service before being submitted as a running job to the service instance.

See also:

Accessing a service

Python applications

To submit a Python application a Python function must be defined that returns the application (and optionally its
configuration) to be submitted. The fully qualified name of this function is specified using the --topology flag.

For example, an application can be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
--topology com.example.apps.sensor_ingester

The function returns one of:

• a Topology instance defining the application

• a tuple containing two values, in order:

– a Topology instance defining the application

– job configuration, one of:

* JobConfig instance

* dict corresponding to the configuration object passed into submit()

For example the above function might be defined as:

42 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

def _create_sensor_ingester_app():
topo = Topology('SensorIngesterApp')

Application declaration omitted
...

return topo

def sensor_ingester():
return (_create_sensor_ingester_app(), JobConfig(job_name='SensorIngester'))

Thus when this application is submitted using the sensor_ingester function it is always submitted with the same job
name SensorIngester.

The function must be accessible from the current Python path (typically through environment variable PYTHONPATH).

SPL applications

The main composite that defines the application is specified using the -main-composite flag specifing the fully
namespace qualified name.

Any required local SPL toolkits, including the one containing the main composite, must be indivdually specified by
location to the --toolkits flag. Any SPL toolkit that is present on the IBM Cloud service need not be included.

For example, an application that uses the Slack toolkit might be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

where $HOME/app/alerters is the location of the SPL application toolkit containing the com.example.
alert::SlackAlerter main composite.

Warning: The main composite name must be namespace qualified. Use of the default namespace for a main
composite is not recommended as it increases the chance of a name clash with another SPL toolkit.

Streams application bundles

A Streams application bundle is submitted to a service instance using --bundle. The argument to --bundle is a
locally accessible file that will be uploaded to the service.

The bundle must have been created on using an IBM Streams install whose architecture and OS version matches the
service instance. Currently this is x86_64 and RedHat/CentOS 6 or 7 depending on the service instance.

The --toolkits flag must not be specified when submitting a bundle.

4.3. streamsx-runner 43

streamsx Documentation, Release 1.14.14

Job options

Job options, such as --job-name, configure the running job.

For --topology job options set as arguments to streamsx-runner override any configuration returned from
the function defining the application.

4.3.7 Creating Streams application bundles

--create-bundle uses a local IBM Streams install to attempt to mimic the build that would occur with
-topology or --main-composite. Differences between the local environment and the IBM Cloud Stream-
ing Analytics build environment may cause build failures in one and not the other.

This can be used as a mechanism to perform a local test build before using the service, or as a valid mechanism to
create bundles for later upload with --bundle.

For example simply changing the --service-name name to --create-bundle perfoms a local build of the
same application:

Submit to an Streaming Analytics service
streamsx-runner --service-name Streaming-Analytics-xd \

--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

Build the same application locally
streamsx-runner --create-bundle \

--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

4.4 streamsx-sc

4.4.1 Overview

SPL compiler for IBM Streams running on IBM Cloud Pak for Data.

streamsx-sc replicates a sub-set of Streams 4.3 sc options.

streamsx-sc is supported for Streams 5.x (Cloud Pak for Data). A local install of Streams is not required, simply
the installation of the streamsx package. All functionality is implemented through the Cloud Pak for Data and Streams
build service REST apis.

Cloud Pak for Data configuration

Integrated configuration

The Streams instance (and its build service) and authentication are defined through environment variables:

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

44 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

Standalone configuration

The Streams build service and authentication are defined through environment variables:

• STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as node port:
https://<NODE-IP>:<NODE-PORT>

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

4.4.2 Usage

streamsx-sc [-h] --main-composite name [--spl-path SPL_PATH]
[--optimized-code-generation] [--no-optimized-code-generation]
[--prefer-facade-tuples] [--ld-flags LD_FLAGS]
[--cxx-flags CXX_FLAGS] [--c++std C++STD]
[--data-directory DATA_DIRECTORY]
[--output-directory OUTPUT_DIRECTORY] [--disable-ssl-verify]
[--static-link] [--standalone-application]
[--set-relax-fusion-relocatability-restartability]
[--checkpoint-directory path] [--profiling-sampling rate]
[compile-time-args [compile-time-args ...]]

Options and arguments

compile-time-args: Pass named arguments each in the format name=value to the compiler. The name
cannot contain the character = but otherwise is a free form string. It matches the name parameter
that is specified in calls that are made to the compile-time argument access functions from within
SPL code. The value can be any string. See Compile-time arguments .

-M,–main-composite: SPL Main composite

-t,–spl-path: Set the toolkit lookup paths. Separate multiple paths with :. Each path is a toolkit directory
or a directory of toolkit directories. This path overrides the STREAMS_SPLPATH environment
variable.

-a,–optimized-code-generation: Generate optimized code with less runtime error checking

—no-optimized-code-generation: Generate non-optimized code with more runtime error checking. Do
not use with the –optimized-code- generation option.

-k,–prefer-facade-tuples: Generate the facade tuples when it is possible.

-w,–ld-flags: Pass the specified flags to ld while linking occurs.

-x,–cxx-flags: Pass the specified flags to the C++ compiler during the build.

–c++std: Specify the language level for the underlying C++ compiles.

–data-directory: Specifies the location of the data directory to use.

–output-directory: Specifies a directory where the application artifacts are placed.

–disable-ssl-verify: Disable SSL verification against the build service

Deprecated arguments Arguments supported by sc but deprecated. They have no affect on compilation.

-s,–static-link

-T,–standalone-application

4.4. streamsx-sc 45

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/compileargs.html

streamsx Documentation, Release 1.14.14

-O,–set-relax-fusion-relocatability-restartability

-K,–checkpoint-directory

-S,–profiling-sampling

4.4.3 Toolkits

The application toolkit is defined as the working directory of streamsx-sc.

Local toolkits are found through the toolkit path set by –spl-path or environment variable STREAMS_SPLPATH. Local
toolkits are included in the build code archive sent to the build service if:

• the toolkit is defined as a dependent of the application toolkit including recursive dependencies of required local
toolkits.

• and a toolkit of a higher version within the required dependency range does not exist locally or remotely on the
build service.

The toolkit path for the compilation on the build service includes:

• the application toolkit

• local tookits included in the build code archive

• all toolkits uploaded on the Streams build service

• all product toolkits on the Streams build service

The application toolkit and local toolkits included in the build archive are processed prior to the actual compilation by:

• having any Python SPL primitive operators extracted using spl-python-extract

• indexed using spl-make-toolkit

New in version 1.13.

4.5 streamsx-service

4.5.1 Overview

Control commands for a Streaming Analytics service.

4.5.2 Usage

streamsx-service [-h] [--service-name SERVICE_NAME] [--full-response]
{start,status,stop} ...

Control commands for a Streaming Analytics service.

positional arguments:
{start,status,stop} Supported commands
start Start the service instance
status Get the service status.
stop Stop the instance for the service.

optional arguments:

(continues on next page)

46 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

(continued from previous page)

-h, --help show this help message and exit
--service-name SERVICE_NAME

Streaming Analytics service name
--full-response Print the full JSON response.

service.py stop [-h] [--force]

optional arguments:
-h, --help show this help message and exit
--force Stop the service even if jobs are running.

4.5.3 Controlling a Streaming Analytics service

The Streaming Analytics service to control is defined using --service-name SERVICE_NAME. If not provided
then the service name is defined by the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

The named service must exist in the VCAP services definition pointed to by the VCAP_SERVICES environment
variable.

The response from making the control request is printed to standard out in JSON format. By default a minimal response
is printed including the status of the service and the job count. The complete response from the service REST API is
printed if the option --full-response is given.

4.6 streamsx-streamtool

4.6.1 Overview

Command line interface for IBM Streams running on IBM Cloud Pak for Data.

streamsx-streamtool replicates a sub-set of Streams streamtool commands focusing on supporting DevOps
for streaming applications.

streamsx-streamtool is supported for Streams Cloud Pak for Data (5.x) instances A local install of Streams is
not required, simply the installation of the streamsx package. All functionality is implemented through Cloud Pak for
Data and Streams REST apis.

Cloud Pak for Data configuration

The Streams instance and authentication are defined through environment variables, the details depend on if the
Streams instance is running in integrated or standalone configuration.

Integrated configuration

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name. Overridden by the --User option.

• STREAMS_PASSWORD - Password for authentication.

4.6. streamsx-streamtool 47

streamsx Documentation, Release 1.14.14

Standalone configuration

• STREAMS_REST_URL - Streams SWS service (REST API) URL, e.g. when the service is exposed as node
port: https://<NODE-IP>:<NODE-PORT>

• STREAMS_BUILD_URL - Streams build service (REST API) URL, e.g. when the service is exposed as node
port: https://<NODE-IP>:<NODE-PORT>. Required for lstoolkit and rmtoolkit.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

4.6.2 Usage

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
[--jobname job-name] [--jobgroup jobgroup-name]
[--outfile file-name] [--P parameter-name]
[--User user]
sab-pathname

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
[--jobs job-id | --jobnames job-names | --file file-name]
[--User user]
[jobid [jobid ...]]

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
[--jobnames job-names] [--fmt format-spec]
[--xheaders] [--long] [--showtimestamp]
[--User user]

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

streamsx-streamtool mkappconfig [-h] [--property name=value]
[--propfile property-file]
[--description description] [--User user]
config-name

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

streamsx-streamtool chappconfig [-h] [--property name=value]
[--description description] [--User user]
config-name

streamsx-streamtool getappconfig [-h] [--User user] config-name

streamsx-streamtool lstoolkit [-h]
(--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

streamsx-streamtool rmtoolkit [-h]
(--toolkitid toolkit-id | --toolkitname toolkit-name | --toolkitregex toolkit-

→˓regex)
[--User user]

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

(continues on next page)

48 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

(continued from previous page)

streamsx-streamtool updateoperators [-h] [--jobname job-name]
[--jobConfig file-name]
[--parallelRegionWidth parallelRegionName=width]
[--force] [--User user]
[jobid]

4.6.3 submitjob

The streamtool submitjob command previews or submits one job.

Description:

A submitted job runs an application that is defined by an application bundle. Application bundles are created by the
Stream Processing Language (SPL) compiler. A job consists of one or more processing elements (PEs). The PEs
are placed on one or more of the application resources for the instance. The submission fails if the PE placement
constraints can’t be met.

Jobs remain in the system until they are canceled or the instance is stopped.

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
[--jobname job-name] [--jobgroup jobgroup-name]
[--outfile file-name] [--P parameter-name]
[--User user]
sab-pathname

Options and arguments

sab-pathname Specifies the path name for the application bundle file. If you do not specify an absolute
path, the command seeks the file in the directory where you ran the command. Alternatively, you can
specify the path name for the application description language (ADL) file if the application bundle
file exists in the same directory.

-g,–jobConfig: Specifies the name of an external file that defines a job configuration overlay. You can
use a job configuration overlay to set the job configuration when the job is submitted or to change
the configuration of a running job.

-P,–P: Specifies a submission-time parameter and value for the job. You can specify this option multiple
times in the command.

-J,–jobgroup: Specifies the job group. If you do not specify this option, the command uses the following
job group: default.

—jobname: Specifies the name of the job.

—outfile: Specifies the path and file name of the output file in which the command writes the list of
submitted job IDs. The path can be an absolute or relative path. If you do not specify a path, the file
is created in the directory where you run the command.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6. streamsx-streamtool 49

streamsx Documentation, Release 1.14.14

4.6.4 canceljob

The streamtool canceljob command cancels one or more jobs.

This command stops the processing elements (PEs) for the job and removes knowledge of the jobs and their PEs from
the instance. The log files for the processing elements are scheduled for removal.

If you specify to collect the PE logs before they are removed, the operation can time out waiting for the termination of
PEs. If such a timeout occurs, the operation fails and the jobs or PEs are still in the system. The canceljob command
can be run again later to cancel them.

You can use the –force option to ignore a PE termination timeout and force the job to cancel.

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
[--jobs job-id | --jobnames job-names | --file file-name]
[--User user]
[jobid [jobid ...]]

Options and arguments

jobid Specifies a list of job IDs.

-f,–file: Specifies the file that contains a list of job IDs, one per line.

-j,–jobs: Specifies a list of job IDs, which are delimited by commas.

—jobnames: Specifies a list of job names, which are delimited by commas.

—collectlogs: Specifies to collect the log and trace files for each processing element that is associated
with the job.

—force: Specifies to quickly cancel a job and remove the job from the Streams data table.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.5 lsjobs

The streamtool lsjobs command lists the jobs in the instance.

The streamtool lsjobs command provides a health summary for each job. The health summary is an aggregation of
the PE health summaries for the job. If all of the PEs for a job are reported as healthy, the job is reported as healthy.
Otherwise, the job is reported as not healthy. Use the streamtool lspes command to determine the health of PEs.

The command also reports the status of each job. For more information about job states, see the IBM Streams product
documentation.

The date and time that the job was submitted are presented in local time with the iso8601 format: yyyy-mm-
ddThh:mm:ss+/-hhmm, where the final hhmm values are the local offset from UTC. For example: 2010-03-
16T13:41:53-0500.

When job selection options are specified, selected jobs must meet all of the selection criteria. After a cancel request
for a job is processed, this command no longer reports the job or its processing elements (PEs).

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
[--jobnames job-names] [--fmt format-spec]
[--xheaders] [--long] [--showtimestamp]
[--User user]

Options and arguments

-j,–jobs: Specifies a list of job IDs, which are delimited by commas.

50 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

—jobnames: Specifies a list of job names, which are delimited by commas.

-u,–users: Specifies to select from this list of user IDs, which are delimited by commas.

—xheaders: Specifies to exclude headings from the report.

-l,–long: Reports launch count, full host names, and all of the operator instance names for the PEs.

—fmt: Specifies the presentation format. The command supports the following values:

• %Mf: Multiline record format. One line per field.

• %Nf: Name prefixed field table format. One line per job.

• %Tf: Standard table format, which is the default. One line per job.

—showtimestamp: Specifies to show a time stamp in the output to indicate when the command was run.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.6 lsappconfig

The streamtool lsappconfig command lists the available configurations that enable connections to an external applica-
tion.

Retrieve a list of configurations for making a connection to an external application.

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

Options and arguments

—fmt: Specifies the presentation format. The command supports the following values:

• %Mf: Multiline record format. One line per field.

• %Nf: Name prefixed field table format. One line per cfgname.

• %Tf: Standard table format, which is the default. One line per cfgname.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.7 mkappconfig

The streamtool mkappconfig command creates a configuration that enables connection to an external application.

Operators can retrieve the configuration information to make a connection to an external application, such as an
Internet Of Things application. The properties include items that the application needs at runtime, like connection
information and credentials.

Use this command to register properties or a properties file. Create the property file using a name=value syntax.

streamsx-streamtool mkappconfig [-h] [--property name=value]
[--propfile property-file]
[--description description] [--User user]
config-name

Options and arguments

config-name: Name of the app config

4.6. streamsx-streamtool 51

streamsx Documentation, Release 1.14.14

—description: Specifies a description for the application configuration. The description can be 1024
characters in length. If the description contains blank characters, it must be enclosed in single or
double quotation marks. Quotation marks within the description must be preceded by a backslash
().

—property: Specifies a property name and value pair to add to or change in the configuration. This
option can be specified multiple times and has an additive effect.

—propfile: Specifies the path to a file that contains a list of application configuration properties for
connecting to an external application. The properties are listed as name=value pairs, each on a
separate line. Use this option as a way to include multiple configuration properties when you create
an application configuration. Options that you specify at the command line override values that are
specified in this property file.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.8 rmappconfig

The streamtool rmappconfig command removes a configuration that enables connection to an external application.

This command removes a configuration that is used for making a connection to an external application.

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

Options and arguments

config-name: Name of the app config

—noprompt: Specifies to suppress confirmation prompts.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.9 chappconfig

The streamtool chappconfig command updates a configuration that enables connection to an external application.

Use this command to change the configuration properties that are used to make a connection to an external application,
such as an Internet Of Things application. You can change the values of properties or add new properties.

streamsx-streamtool chappconfig [-h] [--property name=value]
[--description description] [--User user]
config-name

Options and arguments

config-name: Name of the app config

—description: Specifies a description for the application configuration. The description can be 1024
characters in length. If the description contains blank characters, it must be enclosed in single or
double quotation marks. Quotation marks within the description must be preceded by a backslash
().

—property: Specifies a property name and value pair to add to or change in the configuration. This
option can be specified multiple times and has an additive effect.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

52 Chapter 4. Scripts

streamsx Documentation, Release 1.14.14

4.6.10 getappconfig

The streamtool getappconfig command displays the properties of a configuration that enables connection to an external
application.

This command retrieves the properties and values of a specific configuration for connecting to an external application.

streamsx-streamtool getappconfig [-h] [--User user] config-name

Options and arguments

config-name: Name of the app config

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.11 lstoolkit

List toolkits from a build service.

streamsx-streamtool lstoolkit [-h]
(--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

Options and arguments

-a,–all: List all toolkits

-i,–id: List a specific toolkit given its toolkit id

-n,–name: List all toolkits with this name

-r,–regex: List all toolkits where the name matches the given regex pattern

4.6.12 rmtoolkit

Remove toolkits from a build service.

streamsx-streamtool rmtoolkit [-h]
(--id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

Options and arguments

-i,–id: Specifies the id of the toolkit to delete

-n,–name: Remove all toolkits with this name

-r,–regex: Remove all toolkits where the name matches the given regex pattern

4.6. streamsx-streamtool 53

streamsx Documentation, Release 1.14.14

4.6.13 uploadtoolkit

Upload a toolkit to a build service.

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

Options and arguments

-p,–path: Specifies the path of the indexed toolkit to upload

New in version 1.13.

4.6.14 updateoperators

Adjust a job configuration while the job is running in order to improve the job performance

streamsx-streamtool updateoperators [-h] [--jobname job-name]
[--jobConfig file-name]
[--parallelRegionWidth parallelRegionName=width]
[--force] [--User user]
[jobid]

Options and arguments

jobid: Specifies a job ID

—jobname: Specifies the name of the job

-g,–jobConfig: Specifies the name of an external file that defines a job configuration overlay. You can
use a job configuration overlay to set the job configuration when the job is submitted or to change
the configuration of a running job.

—parallelRegionWidth: Specifies a parallel region name and its width.

—force: Specifies whether to automatically stop the PEs that need to be stopped.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

54 Chapter 4. Scripts

CHAPTER

FIVE

ENVIRONMENTS

5.1 IBM Streaming Analytics service

5.1.1 Overview

IBM® Streaming Analytics for IBM Cloud is powered by IBM® Streams, an advanced analytic platform that you can
use to ingest, analyze, and correlate information as it arrives from different types of data sources in real time. When
you create an instance of the Streaming Analytics service, you get your own instance of IBM® Streams running in
IBM® Cloud, ready to run your IBM® Streams applications.

See also:

Overview at ibm.com

IBM Cloud catalog

Streaming Analytics service documentation

5.1.2 Package support

This streamsx package supports :

• Developing streaming applications in Python that can be submitted to a Streaming Analytics service. See
streamsx.topology.topology , STREAMING_ANALYTICS_SERVICE.

• Submitting streaming applications written in Python or SPL to a Streaming Anlaytics service. See Python
applications, SPL applications.

• Submitting a pre-compiled Streams application bundle (sab file) Python or SPL to a Streaming Anlaytics
service. See Streams application bundles.

• Python bindings to the IBM Streams REST API and the Streaming Analytics REST API. See streamsx.
rest

55

https://www.ibm.com/cloud/streaming-analytics
https://console.bluemix.net/catalog/services/streaming-analytics
https://console.bluemix.net/docs/services/StreamingAnalytics/index.html

streamsx Documentation, Release 1.14.14

5.1.3 Accessing a service

In order to use a Streaming Analytics service you must have access to credentials for the service. There are two
mechanisms used by this package, VCAP services and direct use of Streaming Analytics credentials.

VCAP services

This is the format used by Cloud Foundry for bindable services. The service key for Streaming Analytics service is
streaming-analytics, the value of that key in the VCAP services is a list of accessible services, each service
represented by a separate object.

Each streaming analytics object must have these keys:

• name identifying the name of the service.

• credentials identifying the connection credentials for the service.

Example VCAP services containing two Streaming Analytics services sa-test and sa-prod (with the specific connection
details elided):

{
"streaming-analytics": [
{

"name": "sa-test",
"credentials":
{

"apikey": "...",
"iam_apikey_description": "Auto generated apikey during resource-key operation

→˓for Instance - ...",
"iam_apikey_name": "auto-generated-apikey-...",
"iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
"iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
"v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_

→˓analytics/..."
}

},
{

"name": "sa-prod",
"credentials":
{

"apikey": "...",
"iam_apikey_description": "Auto generated apikey during resource-key operation

→˓for Instance - ...",
"iam_apikey_name": "auto-generated-apikey-...",
"iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
"iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
"v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_

→˓analytics/..."
}

}
]
}

Note: The specific keys in the credentials may differ depending on the service plan.

See also:

56 Chapter 5. Environments

streamsx Documentation, Release 1.14.14

https://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES

Cloud Foundry applications

When a Streaming Analytics service is bound to a Cloud Foundry Python application the environment variable
VCAP_SERVICES is automatically defined and contains a string representation of the JSON VCAP services in-
formation.

Client applications

Client applications are ones that run outside of the IBM Cloud, for example on a local laptop, or applications that are
not bound to a service.

Client applications running must define a valid VCAP services in its JSON format as either:

• In the environment variable VCAP_SERVICES containing a string representation of the JSON VCAP services
information.

• In a file containing a string representation of the JSON VCAP services information and have the file’s absolute
path in either:

– the environment variable VCAP_SERVICES

– the configuration property VCAP_SERVICES when submitting an application using submit()
with context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable
VCAP_SERVICES.

The contents of the file must be manually created, the credentials for the credentials key are obtained from the
Streaming Analytics manage console. Select the Service Credentials page and then copy the required credentials. You
may need to first create credentials. You can an copy the credentials by taking the View credentials action and then
clicking the copy to clipboard icon on the right hand side.

Warning: The credential information in VCAP services is in plain text. Ensure that the any file containing the
information or setting the environment variable has suitable permissions set. For example only readable by the
intended user.

Selecting the service

The Streaming Analyitcs service to use is specifed by its name, the required service much exist in the VCAP service
information using the name key.

The name of the service to use is set by:

• the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

• the configuration property SERVICE_NAME when submitting an application using submit() with
context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable STREAM-
ING_ANALYTICS_SERVICE_NAME.

• the --service-name option to streamsx-runner.

5.1. IBM Streaming Analytics service 57

https://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES

streamsx Documentation, Release 1.14.14

Service definition

The Streaming Analytics service to use may be specified solely using its credentials. The credentials are specified:

• with the configuration property SERVICE_DEFINITION when submitting an application using submit()
with context type STREAMING_ANALYTICS_SERVICE.

• when using streamsx.rest.StreamingAnalyticsConnection.of_definition() to create a
REST connection.

Credentials obtained from the Streaming Analytics manage console. Select the Service Credentials page and then
copy the required credentials. You may need to first create credentials. You can an copy the credentials by taking the
View credentials action and then clicking the copy to clipboard icon on the right hand side.

5.2 IBM Streams Python setup

5.2.1 Developer setup

Developers install the streamsx package Python Package Index (PyPI) to use this functionality:

pip install streamsx

If already installed upgrade to the latest version is recommended:

pip install --upgrade streamsx

A local install of IBM Streams is not required when:

• Using the Streams and Streaming Analytics REST bindings streamsx.rest.

• Devloping and submitting streaming applications using streamsx.topology.topology to Cloud Pak
for Data or Streaming Analytics service on IBM Cloud.

– The environment variable JAVA_HOME must reference a Java 1.8 JRE or JDK/SDK.

A local install of IBM Streams is required when:

• Developing and submitting streaming applications using streamsx.topology.topology to IBM
Streams 4.2, 4.3 distributed or standalone contexts.

– If set the environment variable JAVA_HOME must reference a Java 1.8 JRE or JDK/SDK, otherwise the
Java install from $STREAMS_INSTALL/java is used.

• Creating SPL toolkits with Python primitive operators using streamsx.spl.spl decorators for use with
4.2, 4.3 distributed or standalone applications.

Warning: When using the streamsx package ensure that the environment variable PYTHONPATH does not in-
clude a path ending with com.ibm.streamsx.topology/opt/python/packages. The IBM Streams
environment configuration script streamsprofile.sh modifies or sets PYTHONPATH to include the Python
support from the SPL topology toolkit shipped with the product. This was to support Python before the streamsx
package was available. The recommendation is to unset PYTHONPATH or modify it not to include the path to the
topology toolkit.

Note: The streamsx package is self-contained and does not depend on any SPL topology toolkit (com.ibm.
streamsx.topology) installed under $STREAMS_INSTALL/toolkits or on the SPL compiler’s (sc) toolkit

58 Chapter 5. Environments

streamsx Documentation, Release 1.14.14

path. This is true at SPL compilation time and runtime.

5.2.2 Streaming Analytics service

The service instance has Anaconda installed with Python 3.6 as the runtime environment and has PYTHONHOME
Streams application environment variable pre-configured.

Any streaming applications using Python must use Python 3.6 when submitted to the service instance. The streamsx
package must be installed locally and applications are submitted to the STREAMING_ANALYTICS_SERVICE con-
text.

5.2.3 IBM Cloud Pak for Data

An IBM Streams service instance within Cloud Pak for Data has Anaconda installed with Python 3.6 as the runtime
environment and has PYTHONHOME Streams application environment variable pre-configured.

Any streaming applications using Python must use Python 3.6 when submitted to the service instance.

Streaming applications can be submitted through Jupyter notebooks running in Cloud Pak for Data projects. The
streamsx package is preinstalled and applications are submitted to the DISTRIBUTED context.

Streaming applications can be submitted externally to the OpenShift cluster containing Cloud Pak for Data. The
streamsx package must be installed locally and applications are submitted to the DISTRIBUTED context. The spe-
cific environment variables depend on if the Streams instance is in a integrated or standalone configuration. See
DISTRIBUTED for details.

5.2.4 IBM Streams 4.2, 4.3

For a distributed cluster running Streams Python 3.7, 3.6 or 3.5 may be used.

Anaconda or Miniconda distributions may be used as the Python runtime, these have the advantage of being pre-built
and including a number of standard packages. Ananconda installs may be downloaded at: https://www.continuum.io/
downloads .

If building Python from source then it must be built to support embedding of the runtime with shared libraries
(--enable-shared option to configure).

Distributed

For distributed the Streams application environment variable PYTHONHOME must be set to the Python install path.

This is set using streamtool as:

streamtool setproperty --application-ev PYTHONHOME=path_to_python_install

The application environment variable may also be set using the Streams console. The Instance Management view has
an Application Environment Variables section. Expanding the details for that section allows modification of the set of
environment variables available to Streams applications.

The Python install path must be accessible on every application resource that will execute Python code within a
Streams application.

5.2. IBM Streams Python setup 59

https://www.continuum.io/downloads
https://www.continuum.io/downloads

streamsx Documentation, Release 1.14.14

Note: The Python version used to declare and submit the application must compatible with the setting of
PYTHONHOME in the instance. For example, if PYTHONHOME Streams application instance variable points to a Python
3.6 install, then Python 3.5 or 3.6 can be used to declare and submit the application.

Standalone

The environment PYTHONHOME must be set to the Python install path.

5.2.5 Bundle Python version compatibility

As of 1.13 Streams application bundles (sab files) invoking Python are binary compatible with a range of Python
releases when using Python 3.

The minimum verson supported is the version of Python used during bundle creation.

The maximum version supported is the highest version of Python with a proposed release schedule.

For example if a sab is built with Python 3.6 then it can be submitted to a Streams instance using 3.6 or higher, up to
& including 3.9 which is the highest Python release with a proposed release schedule as of 1.13.

Note: Compatability across Python releases is dependent on Python’s Stable Application Binary Inteface.

5.3 Indices and tables

• genindex

• modindex

• search

60 Chapter 5. Environments

https://docs.python.org/3/c-api/stable.html

PYTHON MODULE INDEX

b
streamsx.build, 35

c
streamsx.topology.composite, 14
streamsx.topology.context, 11

e
streamsx.ec, 17

o
streamsx.spl.op, 19

r
streamsx.rest, 36
streamsx.rest_primitives, 37

s
streamsx.spl.spl, 25
streamsx.topology.schema, 11
streamsx.topology.state, 13

t
streamsx.spl.toolkit, 23
streamsx.spl.types, 22
streamsx.topology, 3
streamsx.topology.tester, 15
streamsx.topology.tester_runtime, 16
streamsx.topology.topology, 6

61

streamsx Documentation, Release 1.14.14

62 Python Module Index

INDEX

M
module

streamsx.build, 35
streamsx.ec, 17
streamsx.rest, 36
streamsx.rest_primitives, 37
streamsx.spl.op, 19
streamsx.spl.spl, 25
streamsx.spl.toolkit, 23
streamsx.spl.types, 22
streamsx.topology, 3
streamsx.topology.composite, 14
streamsx.topology.context, 11
streamsx.topology.schema, 11
streamsx.topology.state, 13
streamsx.topology.tester, 15
streamsx.topology.tester_runtime, 16
streamsx.topology.topology, 6

S
streamsx.build

module, 35
streamsx.ec

module, 17
streamsx.rest

module, 36
streamsx.rest_primitives

module, 37
streamsx.spl.op

module, 19
streamsx.spl.spl

module, 25
streamsx.spl.toolkit

module, 23
streamsx.spl.types

module, 22
streamsx.topology

module, 3
streamsx.topology.composite

module, 14
streamsx.topology.context

module, 11

streamsx.topology.schema
module, 11

streamsx.topology.state
module, 13

streamsx.topology.tester
module, 15

streamsx.topology.tester_runtime
module, 16

streamsx.topology.topology
module, 6

63

	Python Application API for Streams
	streamsx.topology
	streamsx.topology.topology
	streamsx.topology.context
	streamsx.topology.schema
	streamsx.topology.state
	streamsx.topology.composite
	streamsx.topology.tester
	streamsx.topology.tester_runtime
	streamsx.ec
	streamsx.spl.op
	streamsx.spl.types
	streamsx.spl.toolkit

	SPL primitive Python operators
	streamsx.spl.spl

	Streams Python REST API
	streamsx.build
	streamsx.rest
	streamsx.rest_primitives

	Scripts
	spl-python-extract
	streamsx-info
	streamsx-runner
	streamsx-sc
	streamsx-service
	streamsx-streamtool

	Environments
	IBM Streaming Analytics service
	IBM Streams Python setup
	Indices and tables

	Python Module Index
	Index

