
streamsx Documentation
Release 1.14.7

IBMStreams

Feb 21, 2020

CONTENTS

1 Python Application API for Streams 3
1.1 streamsx.topology . 3
1.2 streamsx.topology.topology . 6
1.3 streamsx.topology.context . 37
1.4 streamsx.topology.schema . 48
1.5 streamsx.topology.state . 56
1.6 streamsx.topology.composite . 59
1.7 streamsx.topology.tester . 62
1.8 streamsx.topology.tester_runtime . 71
1.9 streamsx.ec . 71
1.10 streamsx.spl.op . 77
1.11 streamsx.spl.types . 89
1.12 streamsx.spl.toolkit . 93

2 SPL primitive Python operators 95
2.1 streamsx.spl.spl . 95

3 Streams Python REST API 111
3.1 streamsx.build . 111
3.2 streamsx.rest . 113
3.3 streamsx.rest_primitives . 118

4 Scripts 151
4.1 spl-python-extract . 151
4.2 streamsx-info . 152
4.3 streamsx-runner . 152
4.4 streamsx-sc . 156
4.5 streamsx-service . 158
4.6 streamsx-streamtool . 159

5 Environments 167
5.1 IBM Streaming Analytics service . 167
5.2 IBM Streams Python setup . 170
5.3 Indices and tables . 172

Python Module Index 173

Index 175

i

ii

streamsx Documentation, Release 1.14.7

Python APIs for use with IBM® Streaming Analytics service on IBM Cloud and on-premises IBM Streams.

CONTENTS 1

streamsx Documentation, Release 1.14.7

2 CONTENTS

CHAPTER

ONE

PYTHON APPLICATION API FOR STREAMS

Module that allows the definition and execution of streaming applications implemented in Python. Applications use
Python code to process tuples and tuples are Python objects.

SPL operators may also be invoked from Python applications to allow use of existing IBM Streams toolkits.

See topology

streamsx.topology Python application support for IBM Streams.
streamsx.topology.topology Streaming application definition.
streamsx.topology.context Context for submission and build of topologies.
streamsx.topology.schema Schemas for streams.
streamsx.topology.state Application state.
streamsx.topology.composite Composite transformations.
streamsx.topology.tester Testing support for streaming applications.
streamsx.topology.tester_runtime Runtime tester functionality.
streamsx.ec Access to the IBM Streams execution context.
streamsx.spl.op Integration of SPL operators.
streamsx.spl.types SPL type definitions.
streamsx.spl.toolkit SPL toolkit integration.

1.1 streamsx.topology

Python application support for IBM Streams.

1.1.1 Overview

IBM® Streams is an advanced analytic platform that allows user-developed applications to quickly ingest, analyze and
correlate information as it arrives from thousands of real-time sources. Streams can handle very high data throughput
rates, millions of events or messages per second.

With this API Python developers can build streaming applications that can be executed using IBM Streams, including
the processing being distributed across multiple computing resources (hosts or machines) for scalability.

IBM Streams is also available on IBM Cloud through IBM Streaming Analytics service

3

streamsx Documentation, Release 1.14.7

1.1.2 Creating Applications

Applications are created by declaring a flow graph contained in a Topology instance.

For details see streamsx.topology.topology .

1.1.3 Extensions

This package (streamsx) provides the core functionality to build streaming applications in Python for Streams.

Additional streamsx.* packages are available that provide adapters to external systems, analytics and streaming prim-
itives. This include:

• Apache Kafka integration - streamsx.kafka

• Database integration - streamsx.database

• Geospatial analytics- streamsx.geospatial

• IBM Event Streams integration - streamsx.eventstreams

• MQTT integration - streamsx.mqtt

• Cloud Object Storage integration - streamsx.objectstorage

• Streaming primitives - streamsx.standard

A full list of available packages is at : https://pypi.org/search?q=streamsx

1.1.4 Microservices

Publish-subscribe provides the abiltity to connect streams between independent IBM Streams applications regardless
of their implementation language. This allows a microservice approach where a Streams application acting as a service
publishes one or more streams. Subscriber services then subscribe to those streams without requiring any knowledge
of how a stream is published.

Publish-subscribe overview

Applications can publish streams to a topic name which can then be subscribed to by other applications (or even the
same application). Publish-subscribe works across applications written in SPL and those written using the Java/Scala
and Python application APIs.

A subscriber matches a publisher if their topic filter matches a publisher’s topic name and the stream type (schema) is
an exact match to that of the publisher. It is recommended that a single stream type is used for a topic name.

A topic is a string value (encoded with UTF-8), based upon the MQTT topic style

Topic names for publishing a stream:

• Must be at least one character long.

• Use / as a level separator, zero length topic levels are valid.

• Must not include wild card characters + and #.

• Must not include the Unicode character NULL (U+0000).

Topic filters for subscribing to streams:

• Must be at least one character long.

4 Chapter 1. Python Application API for Streams

https://pypi.org/project/streamsx.kafka/
https://pypi.org/project/streamsx.database/
https://pypi.org/project/streamsx.geospatial/
https://pypi.org/project/streamsx.eventstreams/
https://pypi.org/project/streamsx.mqtt/
https://pypi.org/project/streamsx.objectstorage/
https://pypi.org/project/streamsx.standard/
https://pypi.org/search?q=streamsx
https://developer.ibm.com/streamsdev/2016/09/02/analytics-microservice-architecture-with-ibm-streams/
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#appendix-a

streamsx Documentation, Release 1.14.7

• Use / as a level separator.

• Must not include the Unicode character NULL (U+0000).

• + is a single-level wildcard character that can be used at any level, but it must occupy the entire level. +, a/b/+,
+/b/+ and +/b are valid but a/b/c+ is not valid.

• # is a wildcard character that matches any number of levels including the parent and any number of child levels.
The multi-level wildcard character must be specified either on its own or following a topic level separator. In
either case it must be the last character specified in the topic filter. # and ‘a/b/#’ are valid but a/b/c# and a/#/c
are not valid.

Without a wildcard character a topic filter is an exact match for a topic name so that filter a/b/c only matches a/b/c.

Single-level filter (+) match examples are:

• filter + matches a and b but not a/b

• filter a/+ matches a/b, a/c and a/ but not a, b/c or a/b/c

• filter +/+ matches a/b, b/c, d/ and / but not a or a/b/c

Multi-level filter (#) match examples are:

• filter # matches every topic name such as a, b/c, //

• filter a/b/# matches a/b (parent), a/b/c, a/b/d and a/b/c/d

Note: A publish-subscribe match requires the stream type to match as well as the topic filter matching the topic name.

Publish-subscribe is a many to many relationship, any number of publishers can publish to the same topic and stream
type, and there can be many subscribers to a topic.

For example a telco ingest microservice/application may process Call Detail Records from network switches and
publish processed records on multiple topics, cdr/voice/normal, cdr/voice/dropped, cdr/sms, etc. by
publishing each processed stream with its own topic. Then a dropped call analytic microservice would subscribe to
the cdr/voice/dropped topic.

Publish-subscribe is dynamic, using IBM Streams dynamic connections, an application can be submitted that sub-
scribes to topics published by other already running applications. Once the new application has initialized, it will start
consuming tuples from published streams from existing applications. And any stream the new application publishes
will be subscribed to by existing applications where the topic and stream type matches.

An application only receives tuples that are published while it is connected, thus tuples are lost during a connection
failure.

A Python application publishes streams using publish() and subscribes using subscribe().

A stream of Python tuples can only be subscribed to by Python Streams applications. All other types (schemas)
can be subscribed to by any Streams application.

1.1. streamsx.topology 5

streamsx Documentation, Release 1.14.7

Module contents

1.2 streamsx.topology.topology

Streaming application definition.

1.2.1 Overview

IBM Streams is an advanced analytic platform that allows user-developed applications to quickly ingest, analyze and
correlate information as it arrives from thousands of real-time sources. Streams can handle very high data throughput
rates, millions of events or messages per second.

With this API Python developers can build streaming applications that can be executed using IBM Streams, including
the processing being distributed across multiple computing resources (hosts or machines) for scalability.

1.2.2 Topology

A Topology declares a graph of streams and operations against tuples (data items) on those streams.

After being declared, a Topology is submitted to be compiled into a Streams application bundle (sab file) and then
executed. The sab file is a self contained bundle that can be executed in a distributed Streams instance either using the
Streaming Analytics service on IBM Cloud or an on-premise IBM Streams installation.

The compilation step invokes the Streams compiler to produce a bundle. This effectively, from a Python point of view,
produces a runnable version of the Python topology that includes application specific Python C extensions to optimize
performance.

The bundle also includes any required Python packages or modules that were used in the declaration of the application,
excluding ones that are in a directory path containing site-packages.

The Python standard package tool pip uses a directory structure including site-packages when installing pack-
ages. Packages installed with pip can be included in the bundle with add_pip_package() when using a build
service. This avoids the requirement to have packages be preinstalled in cloud environments.

Local Python packages and modules containing callables used in transformations such as map() are copied into the
bundle from their local location. The addition of local packages to the bundle can be controlled with Topology.
include_packages and Topology.exclude_packages.

The Streams runtime distributes the application’s operations across the resources available in the instance.

Note: Topology represents a declaration of a streaming application that will be executed by a Streams instance as a
job, either using the Streaming Analytics service on IBM Cloud or an on-premises distributed instance. Topology does
not represent a running application, so an instance of Stream class does not contain the tuples, it is only a declaration
of a stream.

6 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

1.2.3 Stream

A Stream can be an infinite sequence of tuples, such as a stream for a traffic flow sensor. Alternatively, a stream can
be finite, such as a stream that is created from the contents of a file. When a streams processing application contains
infinite streams, the application runs continuously without ending.

A stream has a schema that defines the type of each tuple on the stream. The schema for a stream is either:

• Python - A tuple may be any Python object. This is the default when the schema is not explictly or implicitly
set.

• String - Each tuple is a Unicode string.

• Binary - Each tuple is a blob.

• Json - Each tuple is a Python dict that can be expressed as a JSON object.

• Structured - A stream that has a structured schema of a ordered list of attributes, with each attribute having a
fixed type (e.g. float64 or int32) and a name. The schema of a structured stream is defined using typed named
tuple or StreamSchema.

A stream’s schema is implictly dervied from type hints declared for the callable of the transform that produces it. For
example readings defined as follows would have a structured schema matching SensorReading

class SensorReading(typing.NamedTuple):
sensor_id: str
ts: int
reading: float

def reading_from_json(value:dict) -> SensorReading:
return SensorReading(value['id'], value['timestamp'], value['reading'])

topo = Topology()
json_readings = topo.source(HttpReadings()).as_json()
readings = json_readings.map(reading_from_json)

Deriving schemas from type hints can be disabled by setting the topology’s type_checking attribute to false, for
example this would change readings in the previous example to have generic Python object schema Python

topo = Topology()
topo.type_checking = False

1.2.4 Stream processing

Callables

A stream is processed to produce zero or more transformed streams, such as filtering a stream to drop unwanted tuples,
producing a stream that only contains the required tuples.

Streaming processing is per tuple based, as each tuple is submitted to a stream consuming operators have their pro-
cessing logic invoked for that tuple.

A functional operator is declared by methods on Stream such as map() which maps the tuples on its input stream to
tuples on its output stream. Stream uses a functional model where each stream processing operator is defined in terms
a Python callable that is invoked passing input tuples and whose return defines what output tuples are submitted for
downstream processing.

The Python callable used for functional processing in this API may be:

1.2. streamsx.topology.topology 7

streamsx Documentation, Release 1.14.7

• A Python lambda function.

• A Python function.

• An instance of a Python callable class.

For example a stream words containing only string objects can be processed by a filter() using a lambda func-
tion:

Filter the stream so it only contains words starting with py
pywords = words.filter(lambda word : word.startswith('py'))

When a callable has type hints they are used to:

• define the schema of the resulting transformation, see Stream.

• type checking the correctness of the transformation at topology declaration time.

For example if the callable defining the source had type hints that indicated it was an iterator of str objects then
the schema of the resultant stream would be String. If this source stream then underwent a Stream.map()
transform with a callable that had a type hint for its argument, a check is made to ensure that the type of the argument
is compatible with str.

Type hints are maintained through transforms regardless of resultant schema. For example a transform that has a return
type hint of int defines the schema as Python, but the type hint is retained even though the schema is generic. Thus
an error is raised at topology declaration time if a downstream transformation uses a callable with a type hint that is
incompatible with being passed an int.

How type hints are used is specific to each transformation, such as source(), map(), filter() etc.

Type checking can be disabled by setting the topology’s type_checking attribute to false.

When a callable is a lambda or defined inline (defined in the main Python script, a notebook or an interactive session)
then a serialized copy of its definition becomes part of the topology. The supported types of captured globals for these
callables is limited to avoid increasing the size of the application and serialization failures due non-serializable objects
directly or indirectly referenced from captured globals. The supported types of captured globals are constants (int,
str, float, bool, bytes, complex), modules, module attributes (e.g. classes, functions and variables defined in
a module), inline classes and functions. If a lambda or inline callable causes an exception due to unsupported global
capture then moving it to its own module is a solution.

Due to Python bug 36697 a lambda or inline callable can incorrect capture a global variable. For example an inline
class using a attribute of self.model will incorrectly capture the global model even if the global variable model
is never used within the class. To workaround this bug use attribute or variable names that do not shadow global
variables (e.g. self._model).

Due to issue 2336 an inline class using super() will cause an AttributeError at runtime. Workaround is to
call the super class’s method directly, for example replace this code:

class A(X):
def __init__(self):

super().__init__()

with:

class A(X):
def __init__(self):

X.__init__(self)

or move the class to a module.

8 Chapter 1. Python Application API for Streams

https://bugs.python.org/issue36697
https://github.com/IBMStreams/streamsx.topology/issues/2336

streamsx Documentation, Release 1.14.7

Stateful operations

Use of a class instance allows the operation to be stateful by maintaining state in instance attributes across invocations.

Note: For support with consistent region or checkpointing instances should ensure that the object’s state can be
pickled. See https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

Initialization and shutdown

Execution of a class instance effectively run in a context manager so that an instance’s __enter__ method is called
when the processing element containing the instance is initialized and its __exit__ method called when the process-
ing element is stopped. To take advantage of this the class must define both __enter__ and __exit__ methods.

Note: Since an instance of a class is passed to methods such as map() __init__ is only called when the topology
is declared, not at runtime. Initialization at runtime, such as opening connections, occurs through the __enter__
method.

Example of using __enter__ to create custom metrics:

import streamsx.ec as ec

class Sentiment(object):
def __init__(self):

pass

def __enter__(self):
self.positive_metric = ec.CustomMetric(self, "positiveSentiment")
self.negative_metric = ec.CustomMetric(self, "negativeSentiment")

def __exit__(self, exc_type, exc_value, traceback):
pass

def __call__(self):
pass

When an instance defines a valid __exit__ method then it will be called with an exception when:

• the instance raises an exception during processing of a tuple

• a data conversion exception is raised converting a value to an structutured schema tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing
processing element will be terminated.

1.2. streamsx.topology.topology 9

https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.7

Tuple semantics

Python objects on a stream may be passed by reference between callables (e.g. the value returned by a map callable
may be passed by reference to a following filter callable). This can only occur when the functions are executing in
the same PE (process). If an object is not passed by reference a deep-copy is passed. Streams that cross PE (process)
boundaries are always passed by deep-copy.

Thus if a stream is consumed by two map and one filter callables in the same PE they may receive the same object
reference that was sent by the upstream callable. If one (or more) callable modifies the passed in reference those
changes may be seen by the upstream callable or the other callables. The order of execution of the downstream
callables is not defined. One can prevent such potential non-deterministic behavior by one or more of these techniques:

• Passing immutable objects

• Not retaining a reference to an object that will be submitted on a stream

• Not modifying input tuples in a callable

• Using copy/deepcopy when returning a value that will be submitted to a stream.

Applications cannot rely on pass-by reference, it is a performance optimization that can be made in some situations
when stream connections are within a PE.

Application log and trace

IBM Streams provides application trace and log services which are accesible through standard Python loggers from
the logging module.

See Application log and trace.

SPL operators

In addition an application declared by Topology can include stream processing defined by SPL primitive or composite
operators. This allows reuse of adapters and analytics provided by IBM Streams, open source and third-party SPL
toolkits.

See streamsx.spl.op

1.2.5 Module contents

1.2.6 Module contents

Classes

PendingStream Pending stream connection.
Routing Defines how tuples are routed to channels in a parallel

region.
Sink Termination of a Stream.
Stream The Stream class is the primary abstraction within a

streaming application.
SubscribeConnection Connection mode between a subscriber and matching

publishers.
Continued on next page

10 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Table 2 – continued from previous page
Topology The Topology class is used to define data sources, and is

passed as a parameter when submitting an application.
View The View class provides access to a continuously up-

dated sampling of data items on a Stream after sub-
mission.

Window Declaration of a window of tuples on a Stream.

class streamsx.topology.topology.Routing
Bases: enum.Enum

Defines how tuples are routed to channels in a parallel region.

A parallel region is started by parallel() and ended with end_parallel() or for_each().

BROADCAST = 0
Tuples are routed to every channel in the parallel region.

HASH_PARTITIONED = 3
Tuples are routed based upon a hash value so that tuples with the same hash and thus same value are always
routed to the same channel. When a hash function is specified it is passed the tuple and the return value is
the hash. When no hash function is specified then hash(tuple) is used.

Each tuple is only sent to a single channel.

Warning: A consistent hash function is required to guarantee that a tuple with the same value is
always routed to the same channel. hash() is not consistent in that for types str, bytes and datetime
objects are “salted” with an unpredictable random value (Python 3.5). Thus if the processing element
is restarted channel routing for a hash based upon a str, bytes or datetime will change. In addition code
executing in the channels can see a different hash value to other channels and the execution that routed
the tuple due to being in different processing elements.

ROUND_ROBIN = 1
Tuples are routed to maintain an even distribution of tuples to the channels.

Each tuple is only sent to a single channel.

class streamsx.topology.topology.SubscribeConnection
Bases: enum.Enum

Connection mode between a subscriber and matching publishers.

New in version 1.9.

See also:

subscribe()

Buffered = 1
Buffered connection between a subscriber and and matching publishers.

With a buffered connection tuples from publishers are placed in a single queue owned by the subscriber.
This allows a slower subscriber to handle brief spikes in tuples from publishers.

A subscriber can fully isolate itself from matching publishers by adding a CongestionPolicy that
drops tuples when the queue is full. In this case when the subscriber is not able to keep up with the tuple
rate from all matching subscribers it will have a minimal effect on matching publishers.

Direct = 0
Direct connection between a subscriber and and matching publishers.

1.2. streamsx.topology.topology 11

streamsx Documentation, Release 1.14.7

When connected directly a slow subscriber will cause back-pressure against the publishers, forcing them
to slow tuple processing to the slowest publisher.

class streamsx.topology.topology.Topology(name=None, namespace=None, files=None)
Bases: object

The Topology class is used to define data sources, and is passed as a parameter when submitting an application.
Topology keeps track of all sources, sinks, and transformations within your application.

Submission of a Topology results in a Streams application that has the name namespace::name.

Parameters

• name (str) – Name of the topology. Defaults to a name dervied from the calling eviron-
ment if it can be determined, otherwise a random name.

• namespace (str) – Namespace of the topology. Defaults to a name dervied from the
calling evironment if it can be determined, otherwise a random name.

include_packages
Python package names to be included in the built application. Any package in this list is copied into
the bundle and made available at runtime to the Python callables used in the application. By de-
fault a Topology will automatically discover which packages and modules are required to be copied,
this field may be used to add additional packages that were not automatically discovered. See also
add_pip_package(). Package names in include_packages take precedence over package names in
exclude_packages.

Type set[str]

exclude_packages
Python top-level package names to be excluded from the built application. Excluding a top-level packages
excludes all sub-modules at any level in the package, e.g. sound excludes sound.effects.echo. Only the
top-level package can be defined, e.g. sound rather than sound.filters. Behavior when adding a module
within a package is undefined. When compiling the application using Anaconda this set is pre-loaded with
Python packages from the Anaconda pre-loaded set.

Type set[str]

type_checking
Set to false to disable type checking, defaults to True.

Type bool

name_to_runtime_id
Optional callable that returns a runtime identifier for a name. Used to override the default mapping of
a name into a runtime identifer. It will be called with name and returns a valid SPL identifier or None.
If None is returned then the default mapping for name is used. Defaults to None indicating the default
mapping is used. See Stream.runtime_id.

All declared streams in a Topology are available through their name using topology[name]. The stream’s
name is defined by Stream.name() and will differ from the name parameter passed when creating the stream
if the application uses duplicate names.

Changed in version 1.11: Declared streams available through topology[name].

add_file_dependency(path, location)
Add a file or directory dependency into an Streams application bundle.

Ensures that the file or directory at path on the local system will be available at runtime.

The file will be copied and made available relative to the application directory. Location determines where
the file is relative to the application directory. Two values for location are supported etc and opt. The
runtime path relative to application directory is returned.

12 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

The copy is made during the submit call thus the contents of the file or directory must remain availble until
submit returns.

For example calling add_file_dependency('/tmp/conf.properties', 'etc') will re-
sult in contents of the local file conf.properties being available at runtime at the path application direc-
tory/etc/conf.properties. This call returns etc/conf.properties.

Python callables can determine the application directory at runtime with
get_application_directory(). For example the path above at runtime is os.
path.join(streamsx.ec.get_application_directory(), 'etc', 'conf.
properties')

Parameters

• path (str) – Path of the file on the local system.

• location (str) – Location of the file in the bundle relative to the application directory.

Returns Path relative to application directory that can be joined at runtime with
get_application_directory.

Return type str

New in version 1.7.

add_pip_package(requirement)
Add a Python package dependency for this topology.

If the package defined by the requirement specifier is not pre-installed on the build system then the pack-
age is installed using pip and becomes part of the Streams application bundle (sab file). The package is
expected to be available from pypi.org.

If the package is already installed on the build system then it is not added into the sab file. The assumption
is that the runtime hosts for a Streams instance have the same Python packages installed as the build
machines. This is always true for IBM Cloud Pak for Data and the Streaming Analytics service on IBM
Cloud.

The project name extracted from the requirement specifier is added to exclude_packages to avoid the
package being added by the dependency resolver. Thus the package should be added before it is used in
any stream transformation.

When an application is run with trace level info the available Python packages on the running system are
listed to application trace. This includes any packages added by this method.

Example:

topo = Topology()
Add dependency on pint package
and astral at version 0.8.1
topo.add_pip_package('pint')
topo.add_pip_package('astral==0.8.1')

Parameters requirement (str) – Package requirements specifier.

Warning: Only supported when using the build service with a Streams instance in Cloud Pak for Data
or Streaming Analytics service on IBM Cloud.

1.2. streamsx.topology.topology 13

streamsx Documentation, Release 1.14.7

Note: Installing packages through pip is preferred to the automatic dependency checking performed on
local modules. This is because pip will perform a full install of the package including any dependent
packages and additional files, such as shared libraries, that might be missed by dependency discovery.

New in version 1.9.

property checkpoint_period
Enable checkpointing for the topology, and define the checkpoint period.

When checkpointing is enabled, the state of all stateful operators is saved periodically. If the operator
restarts, its state is restored from the most recent checkpoint.

The checkpoint period is the frequency at which checkpoints will be taken. It can either be a timedelta
value or a floating point value in seconds. It must be at 0.001 seconds or greater.

A stateful operator is an operator whose callable is an instance of a Python callable class.

Examples:

Create a topology that will checkpoint every thirty seconds
topo = Topology()
topo.checkpoint_period = 30.0

Create a topology that will checkpoint every two minutes
topo = Topology()
topo.checkpoint_period = datetime.timedelta(minutes=2)

New in version 1.11.

create_submission_parameter(name, default=None, type_=None)
Create a submission parameter.

A submission parameter is a handle for a value that is not defined until topology submission time. Sub-
mission parameters enable the creation of reusable topology bundles.

A submission parameter has a name. The name must be unique within the topology.

The returned parameter is a callable. Prior to submitting the topology, while constructing the topology,
invoking it returns None.

After the topology is submitted, invoking the parameter within the executing topology returns the actual
submission time value (or the default value if it was not set at submission time).

Submission parameters may be used within functional logic. e.g.:

threshold = topology.create_submission_parameter('threshold', 100);

s is some stream of integers
s = ...
s = s.filter(lambda v : v > threshold())

Note: The parameter (value returned from this method) is only supported within a lambda expression or
a callable that is not a function.

The default type of a submission parameter’s value is a str. When a default is specified the type of the
value matches the type of the default.

If default is not set, then the type can be set with type_.

14 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

The types supported are str, int, float and bool.

Topology submission behavior when a submission parameter lacking a default value is created and a value
is not provided at submission time is defined by the underlying topology execution runtime.

• Submission fails for contexts DISTRIBUTED, STANDALONE, and
STREAMING_ANALYTICS_SERVICE.

Parameters

• name (str) – Name for submission parameter.

• default – Default parameter when submission parameter is not set.

• type_ – Type of parameter value when default is not set. Supported values are str, int,
float and bool.

New in version 1.9.

property name
Name of the topology.

Returns Name of the topology.

Return type str

property namespace
Namespace of the topology.

Returns Namespace of the topology.

Return type str

source(func, name=None)
Declare a source stream that introduces tuples into the application.

Typically used to create a stream of tuple from an external source, such as a sensor or reading from an
external system.

Tuples are obtained from an iterator obtained from the passed iterable or callable that returns an iterable.

Each tuple that is not None from the iterator is present on the returned stream.

Each tuple is a Python object and must be picklable to allow execution of the application to be distributed
across available resources in the Streams instance.

If the iterator’s __iter__ or __next__ block then shutdown, checkpointing or consistent region pro-
cessing may be delayed. Having __next__ return None (no available tuples) or tuples to submit will
allow such processing to proceed.

A shutdown threading.Event is available through streamsx.ec.shutdown() which becomes
set when a shutdown of the processing element has been requested. This event my be waited on to perform
a sleep that will terminate upon shutdown.

Parameters

• func (callable) – An iterable or a zero-argument callable that returns an iterable of
tuples.

• name (str) – Name of the stream, defaults to a generated name.

Exceptions raised by func or its iterator will cause its processing element will terminate.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method.

1.2. streamsx.topology.topology 15

streamsx Documentation, Release 1.14.7

Suppressing an exception raised by func.__iter__ causes the source to be empty, no tuples are sub-
mitted to the stream.

Suppressing an exception raised by __next__ on the iterator results in no tuples being submitted for that
call to __next__. Processing continues with calls to __next__ to fetch subsequent tuples.

Returns A stream whose tuples are the result of the iterable obtained from func.

Return type Stream

Type hints

Type hints on func define the schema of the returned stream, defaulting to Python if no type hints are
present.

For example s_sensor has a type hint that defines it as an iterable of SensorReading instances
(typed named tuples). Thus readings has a structured schema matching SensorReading

def s_sensor() -> typing.Iterable[SensorReading] :
...

topo = Topology()
readings = topo.source(s_sensor)

Simple examples

Finite constant source stream containing two tuples Hello and World:

topo = Topology()
hw = topo.source(['Hello', 'World'])

Use of builtin range to produce a finite source stream containing 100 int tuples from 0 to 99:

topo = Topology()
hw = topo.source(range(100))

Use of itertools.count to produce an infinite stream of int tuples:

import itertools
topo = Topology()
hw = topo.source(lambda : itertools.count())

Use of itertools to produce an infinite stream of tuples with a constant value and a sequence number:

import itertools
topo = Topology()
hw = topo.source(lambda : zip(itertools.repeat(), itertools.count()))

16 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

External system examples

Typically sources pull data in from external systems, such as files, REST apis, databases, message systems
etc. Such a source will typically be implemented as class that when called returns an iterable.

To allow checkpointing of state standard methods __enter__ and __exit__ are implemented to allow
creation of runtime objects that cannot be persisted, for example a file handle.

At checkpoint time state is preserved through standard pickling using __getstate__ and (optionally)
__setstate__.

Stateless source that polls a REST API every ten seconds to get a JSON object (dict) with current time
details:

import requests
import time

class RestJsonReader(object):
def __init__(self, url, period):

self.url = url
self.period = period
self.session = None

def __enter__(self):
self.session = requests.Session()
self.session.headers.update({'Accept': 'application/json'})

def __exit__(self, exc_type, exc_value, traceback):
if self.session:

self.session.close()
self.session = None

def __call__(self):
return self

def __iter__(self):
return self

def __next__(self):
time.sleep(self.period)
return self.session.get(self.url).json()

def __getstate__(self):
Remove the session from the persisted state
return {'url':self.url, 'period':self.period}

def main():
utc_now = 'http://worldclockapi.com/api/json/utc/now'
topo = Topology()
times = topo.source(RestJsonReader(10, utc_now))

Warning: Source functions that use generators are not supported when checkpointing or within a
consistent region. This is because generators cannot be pickled (even when using dill).

Changed in version 1.14: Type hints are used to define the returned stream schema.

property streams

1.2. streamsx.topology.topology 17

streamsx Documentation, Release 1.14.7

Dict of all streams in the topology.

Key is the name of the stream, value is the corresponding Stream instance.

The returned value is a shallow copy of current streams in this topology. This allows callers to iterate over
the copy and perform operators that would add streams.

Note: Includes all streams created by composites and any internal streams created by topology.

New in version 1.14.

subscribe(topic, schema=<CommonSchema.Python: <streamsx.topology.schema.StreamSchema ob-
ject>>, name=None, connect=None, buffer_capacity=None, buffer_full_policy=None)

Subscribe to a topic published by other Streams applications. A Streams application may publish a stream
to allow other Streams applications to subscribe to it. A subscriber matches a publisher if the topic and
schema match.

By default a stream is subscribed as Python objects which connects to streams published to topic by
Python Streams applications.

Structured schemas are subscribed to using an instance of StreamSchema. A Streams application pub-
lishing structured schema streams may have been implemented in any programming language supported
by Streams.

JSON streams are subscribed to using schema Json. Each tuple on the returned stream will be a Python
dictionary object created by json.loads(tuple). A Streams application publishing JSON streams
may have been implemented in any programming language supported by Streams.

String streams are subscribed to using schema String. Each tuple on the returned stream will be a
Python string object. A Streams application publishing string streams may have been implemented in any
programming language supported by Streams.

Subscribers can ensure they do not slow down matching publishers by using a buffered connection with a
buffer full policy that drops tuples.

Parameters

• topic (str) – Topic to subscribe to.

• schema (StreamSchema) – schema to subscribe to.

• name (str) – Name of the subscribed stream, defaults to a generated name.

• connect (SubscribeConnection) – How subscriber will be connected to matching
publishers. Defaults to Direct connection.

• buffer_capacity (int) – Buffer capacity in tuples when connect is set to
Buffered. Defaults to 1000 when connect is Buffered. Ignored when connect is None
or Direct.

• buffer_full_policy (CongestionPolicy) – Policy when a pulished tuple ar-
rives and the subscriber’s buffer is full. Defaults to Wait when connect is Buffered. Ignored
when connect is None or Direct.

Returns A stream whose tuples have been published to the topic by other Streams applications.

Return type Stream

Changed in version 1.9: connect, buffer_capacity and buffer_full_policy parameters added.

class streamsx.topology.topology.Stream(topology, oport, other=None)
Bases: streamsx._streams._placement._Placement, object

18 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

The Stream class is the primary abstraction within a streaming application. It represents a potentially infinite
series of tuples which can be operated upon to produce another stream, as in the case of map(), or terminate a
stream, as in the case of for_each().

aliased_as(name)
Create an alias of this stream.

Returns an alias of this stream with name name. When invocation of an SPL operator requires an
Expression against an input port this can be used to ensure expression matches the input port alias
regardless of the name of the actual stream.

Example use where the filter expression for a Filter SPL operator uses IN to access input tuple attribute
seq:

s = ...
s = s.aliased_as('IN')

params = {'filter': op.Expression.expression('IN.seq % 4ul == 0ul')}
f = op.Map('spl.relational::Filter', stream, params = params)

Parameters name (str) – Name for returned stream.

Returns Alias of this stream with name equal to name.

Return type Stream

New in version 1.9.

as_json(force_object=True, name=None)
Declares a stream converting each tuple on this stream into a JSON value.

The stream is typed as a JSON stream.

Each tuple must be supported by JSONEncoder.

If force_object is True then each tuple that not a dict will be converted to a JSON object with a single key
payload containing the tuple. Thus each object on the stream will be a JSON object.

If force_object is False then each tuple is converted to a JSON value directly using json package.

If this stream is already typed as a JSON stream then it will be returned (with no additional processing
against it and force_object and name are ignored).

Parameters

• force_object (bool) – Force conversion of non dicts to JSON objects.

• name (str) – Name of the resulting stream. When None defaults to a generated name.

New in version 1.6.1.

Returns Stream containing the JSON representations of tuples on this stream.

Return type Stream

as_string(name=None)
Declares a stream converting each tuple on this stream into a string using str(tuple).

The stream is typed as a string stream.

If this stream is already typed as a string stream then it will be returned (with no additional processing
against it and name is ignored).

Parameters name (str) – Name of the resulting stream. When None defaults to a generated
name.

1.2. streamsx.topology.topology 19

streamsx Documentation, Release 1.14.7

New in version 1.6.

New in version 1.6.1: name parameter added.

Returns Stream containing the string representations of tuples on this stream.

Return type Stream

autonomous()
Starts an autonomous region for downstream processing. By default IBM Streams processing is executed
in an autonomous region where any checkpointing of operator state is autonomous (independent) of other
operators.

This method may be used to end a consistent region by starting an autonomous region. This may be called
even if this stream is in an autonomous region.

Autonomous is not applicable when a topology is submitted to a STANDALONE contexts and will be
ignored.

New in version 1.6.

Returns Stream whose subsequent downstream processing is in an autonomous region.

Return type Stream

batch(size)
Declares a tumbling window to support batch processing against this stream.

The number of tuples in the batch is defined by size.

If size is an int then it is the count of tuples in the batch. For example, with size=10 each batch will
nominally contain ten tuples. Thus processing against the returned Window , such as aggregate()
will be executed every ten tuples against the last ten tuples on the stream. For example the first three
aggregations would be against the first ten tuples on the stream, then the next ten tuples and then the third
ten tuples, etc.

If size is an datetime.timedelta then it is the duration of the batch using wallclock time. With a timedelta
representing five minutes then the window contains any tuples that arrived in the last five minutes. Thus
processing against the returned Window , such as aggregate() will be executed every five minutes
tuples against the batch of tuples arriving in the last five minutes on the stream. For example the first three
aggregations would be against any tuples on the stream in the first five minutes, then the next five minutes
and then minutes ten to fifteen. A batch can contain no tuples if no tuples arrived on the stream in the
defined duration.

Each tuple on the stream appears only in a single batch.

The number of tuples seen by processing against the returned window may be less than size (count or time
based) when:

• the stream is finite, the final batch may contain less tuples than the defined size,

• the stream is in a consistent region, drain processing will complete the current batch without waiting
for it to batch to reach its nominal size.

Examples:

Create batches against stream s of 100 tuples each
w = s.batch(size=100)

Create batches against stream s every five minutes
w = s.batch(size=datetime.timedelta(minutes=5))

20 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Parameters size – The size of each batch, either an int to define the number of tuples or
datetime.timedelta to define the duration of the batch.

Returns Window allowing batch processing on this stream.

Return type Window

New in version 1.11.

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

end_low_latency()
Returns a Stream that is no longer guaranteed to run in the same process as the calling stream.

Returns Stream

end_parallel()
Ends a parallel region by merging the channels into a single stream.

Returns Stream for which subsequent transformations are no longer parallelized.

Return type Stream

See also:

set_parallel(), parallel()

filter(func, name=None)
Filters tuples from this stream using the supplied callable func.

1.2. streamsx.topology.topology 21

streamsx Documentation, Release 1.14.7

For each stream tuple t on the stream func(t) is called, if the return evaluates to True the tuple will be
present on the returned stream, otherwise the tuple is filtered out.

Parameters

• func – Filter callable that takes a single parameter for the stream tuple.

• name (str) – Name of the stream, defaults to a generated name.

If invoking func for a stream tuple raises an exception then its processing element will terminate. By
default the processing element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method. When an exception is suppressed no tuple is submitted to the filtered stream corresponding to the
input tuple that caused the exception.

Returns A Stream containing tuples that have not been filtered out. The schema of the returned
stream is the same as this stream’s schema.

Return type Stream

Type hints

The argument type hint on func is used (if present) to verify at topology declaration time that it is compat-
ible with the type of tuples on this stream.

flat_map(func=None, name=None)
Maps and flatterns each tuple from this stream into 0 or more tuples.

For each tuple on this stream func(tuple) is called. If the result is not None then the the result is
iterated over with each value from the iterator that is not None will be submitted to the return stream.

If the result is None or an empty iterable then no tuples are submitted to the returned stream.

Parameters

• func – A callable that takes a single parameter for the tuple. If not supplied then a
function equivalent to lambda tuple_ : tuple_ is used. This is suitable when
each tuple on this stream is an iterable to be flattened.

• name (str) – Name of the flattened stream, defaults to a generated name.

If invoking func for a tuple on the stream raises an exception then its processing element will terminate.
By default the processing element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method. When an exception is suppressed no tuples are submitted to the flattened and mapped stream
corresponding to the input tuple that caused the exception.

Returns A Stream containing flattened and mapped tuples.

Return type Stream

Raises TypeError – if func does not return an iterator nor None

Changed in version 1.11: func is optional.

for_each(func, name=None)
Sends information as a stream to an external system.

The transformation defined by func is a callable or a composite transformation.

22 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Callable transformation

If func is callable then for each tuple t on this stream func(t) is called.

If invoking func for a tuple on the stream raises an exception then its processing element will terminate.
By default the processing element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method. When an exception is suppressed no further processing occurs for the input tuple that caused the
exception.

Composite transformation

A composite transformation is an instance of ForEach. Composites allow the application developer to
use the standard functional style of the topology api while allowing allowing expansion of a for_each
transform to multiple basic transformations.

Parameters

• func – A callable that takes a single parameter for the tuple and returns None.

• name (str) – Name of the stream, defaults to a generated name.

Returns Stream termination.

Return type streamsx.topology.topology.Sink

Type hints

The argument type hint on func is used (if present) to verify at topology declaration time that it is compat-
ible with the type of tuples on this stream.

Changed in version 1.7: Now returns a Sink instance.

Changed in version 1.14: Support for type hints and composite transformations.

isolate()
Guarantees that the upstream operation will run in a separate processing element from the downstream
operation

Returns Stream whose subsequent immediate processing will occur in a separate processing
element.

Return type Stream

last(size=1)
Declares a slding window containing most recent tuples on this stream.

The number of tuples maintained in the window is defined by size.

If size is an int then it is the count of tuples in the window. For example, with size=10 the window
always contains the last (most recent) ten tuples.

If size is an datetime.timedelta then it is the duration of the window. With a timedelta representing five
minutes then the window contains any tuples that arrived in the last five minutes.

Parameters size – The size of the window, either an int to define the number of tuples or
datetime.timedelta to define the duration of the window.

Examples:

1.2. streamsx.topology.topology 23

streamsx Documentation, Release 1.14.7

Create a window against stream s of the last 100 tuples
w = s.last(size=100)

Create a window against stream s of tuples
arrived on the stream in the last five minutes
w = s.last(size=datetime.timedelta(minutes=5))

Returns Window of the last (most recent) tuples on this stream.

Return type Window

low_latency()
The function is guaranteed to run in the same process as the upstream Stream function. All streams that are
created from the returned stream are also guaranteed to run in the same process until end_low_latency() is
called.

Returns Stream

map(func=None, name=None, schema=None)
Maps each tuple from this stream into 0 or 1 stream tuples.

The transformation defined by func is a callable or a composite transformation.

Callable transformation

For each tuple on this stream result = func(tuple) is called. If result is not None then the result
will be submitted as a tuple on the returned stream. If result is None then no tuple submission will occur.

By default the submitted tuple is result without modification resulting in a stream of picklable Python
objects. Setting the schema parameter changes the type of the stream and modifies each result before
submission.

• object or Python - The default: result is submitted.

• str type or String - A stream of strings: str(result) is submitted.

• json or Json - A stream of JSON objects: result must be convertable to a JSON object using
json package.

• StreamSchema - A structured stream. result must be a dict or (Python) tuple. When a dict is
returned the outgoing stream tuple attributes are set by name, when a tuple is returned stream tuple
attributes are set by position.

• string value - Equivalent to passing StreamSchema(schema)

Composite transformation

A composite transformation is an instance of Map. Composites allow the application developer to use the
standard functional style of the topology api while allowing allowing expansion of a map transform to
multiple basic transformations.

Parameters

• func – A callable that takes a single parameter for the tuple. If not supplied then a
function equivalent to lambda tuple_ : tuple_ is used.

• name (str) – Name of the mapped stream, defaults to a generated name.

• schema (StreamSchema|CommonSchema|str) – Schema of the resulting stream.

24 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

If invoking func for a tuple on the stream raises an exception then its processing element will terminate.
By default the processing element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method. When an exception is suppressed no tuple is submitted to the mapped stream corresponding to
the input tuple that caused the exception.

Returns A stream containing tuples mapped by func.

Return type Stream

Type hints

If schema is not set then the return type hint on func define the schema of the returned stream, defaulting
to Python if no type hints are present.

For example reading_from_json has a type hint that defines it as returning SensorReading instances
(typed named tuples). Thus readings has a structured schema matching SensorReading

def reading_from_json(value:dict) -> SensorReading:
return SensorReading(value['id'], value['timestamp'], value['reading'])

topo = Topology()
json_readings = topo.source(HttpReadings()).as_json()
readings = json_readings.map(reading_from_json)

The argument type hint on func is used (if present) to verify at topology declaration time that it is compat-
ible with the type of tuples on this stream.

New in version 1.7: schema argument added to allow conversion to a structured stream.

New in version 1.8: Support for submitting dict objects as stream tuples to a structured stream (in addition
to existing support for tuple objects).

Changed in version 1.11: func is optional.

property name
Unique name of the stream.

When declaring a stream a name parameter can be provided. If the supplied name is unique within its
topology then it will be used as-is, otherwise a variant will be provided that is unique within the topology.

If a name parameter was not provided when declaring a stream then the stream is assigned a unique
generated name.

Returns Name of the stream.

Return type str

See also:

aliased_as()

Warning: If the name is not a valid SPL identifier or longer than 80 characters then the name will be
converted to a valid SPL identifier at compile and runtime. This identifier will be the name used in the
REST api and log/trace.

Visualizations of the runtime graph uses name rather than the converted identifier.

A valid SPL identifier consists only of characters A-Z, a-z, 0-9, _ and must not start with a number
or be an SPL keyword.

1.2. streamsx.topology.topology 25

streamsx Documentation, Release 1.14.7

See runtime_id.

parallel(width, routing=<Routing.ROUND_ROBIN: 1>, func=None, name=None)
Split stream into channels and start a parallel region.

Returns a new stream that will contain the contents of this stream with tuples distributed across its channels.

The returned stream starts a parallel region where all downstream transforms are replicated across width
channels. A parallel region is terminated by end_parallel() or for_each().

Any transform (such as map(), filter(), etc.) in a parallel region has a copy of its callable executing
independently in parallel. Channels remain independent of other channels until the region is terminated.

For example with this topology fragment a parallel region of width 3 is created:

s = ...
p = s.parallel(3)
p = p.filter(F()).map(M())
e = p.end_parallel()
e.for_each(E())

Tuples from p (parallelized s) are distributed across three channels, 0, 1 & 2 and are independently pro-
cessed by three instances of F and M. The tuples that pass the filter F in channel 0 are then mapped by the
instance of M in channel 0, and so on for channels 1 and 2.

The channels are combined by end_parallel and so a single instance of E processes all the tuples
from channels 0, 1 & 2.

This stream instance (the original) is outside of the parallel region and so any downstream transforms are
executed normally. Adding this map transform would result in tuples on s being processed by a single
instance of N:

n = s.map(N())

The number of channels is set by width which may be an int greater than zero or a submission parameter
created by Topology.create_submission_parameter().

With IBM Streams 4.3 or later the number of channels can be dynamically changed at runtime.

Tuples are routed to channels based upon routing, see Routing.

A parallel region can have multiple termination points, for example when a stream within the stream has
multiple transforms against it:

s = ...
p = s.parallel(3)
m1p = p.map(M1())
m2p = p.map(M2())
p.for_each(E())

m1 = m1p.end_parallel()
m2 = m2p.end_parallel()

Parallel regions can be nested, for example:

s = ...
m = s.parallel(2).map(MO()).parallel(3).map(MI()).end_parallel().end_
→˓parallel()

26 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

In this case there will be two instances of MO (the outer region) and six (2x3) instances of MI (the inner
region).

Streams created by source() or subscribe() are placed in a parallel region by set_parallel().

Parameters

• width (int) – Degree of parallelism.

• routing (Routing) – Denotes what type of tuple routing to use.

• func – Optional function called when Routing.HASH_PARTITIONED routing is
specified. The function provides an integer value to be used as the hash that determines
the tuple channel routing.

• name (str) – The name to display for the parallel region.

Returns A stream for which subsequent transformations will be executed in parallel.

Return type Stream

See also:

set_parallel(), end_parallel(), split()

print(tag=None, name=None)
Prints each tuple to stdout flushing after each tuple.

If tag is not None then each tuple has “tag: ” prepended to it before printing.

Parameters

• tag – A tag to prepend to each tuple.

• name (str) – Name of the resulting stream. When None defaults to a generated name.

Returns Stream termination.

Return type streamsx.topology.topology.Sink

New in version 1.6.1: tag, name parameters.

Changed in version 1.7: Now returns a Sink instance.

publish(topic, schema=None, name=None)
Publish this stream on a topic for other Streams applications to subscribe to. A Streams application may
publish a stream to allow other Streams applications to subscribe to it. A subscriber matches a publisher if
the topic and schema match.

By default a stream is published using its schema.

A stream of Python objects can be subscribed to by other Streams Python applications.

If a stream is published setting schema to json or Json then it is published as a stream of JSON objects.
Other Streams applications may subscribe to it regardless of their implementation language.

If a stream is published setting schema to str or String then it is published as strings. Other Streams
applications may subscribe to it regardless of their implementation language.

Supported values of schema are only json, Json and str, String.

Parameters

• topic (str) – Topic to publish this stream to.

• schema – Schema to publish. Defaults to the schema of this stream.

• name (str) – Name of the publish operator, defaults to a generated name.

1.2. streamsx.topology.topology 27

streamsx Documentation, Release 1.14.7

Returns Stream termination.

Return type streamsx.topology.topology.Sink

New in version 1.6.1: name parameter.

Changed in version 1.7: Now returns a Sink instance.

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

property runtime_id
Return runtime identifier.

If name is not a valid SPL identifier then the runtime identifier will be valid SPL identifier that represents
name. Otherwise name is returned.

The runtime identifier is how the underlying SPL operator or output port is named in the REST api and
trace/log files.

If a topology unique name is supplied when creating a stream then runtime identifier is fixed regardless of
other changes in the topology.

The algorithm to determine the runtime name (for clients that cannot call this method, for example, remote
REST clients gathering metrics) is as follows.

If the length of name is less than or equal to 80 and name is an SPL identifier then name is used. An SPL
identifier consists only of the characters A-Z, a-z 0-9 and _, must not start with 0-9 and must not be
an SPL keyword.

Otherwise the identifier has the form prefix_suffix.

prefix is the kind of the SPL operator stripped of its namespace and ::. For all functional methods the
operator kind is the method name with the first character upper-cased.

For example, Filter for filter(), Beacon for spl::utility::Beacon.

28 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

suffix is a hashed version of name, an MD5 digest d is calculated from the UTf-8 encoding of name.
d is shortened by having its first eight bytes xor folded with its last eight bytes. d is then base64 encoded
to produce a string. Padding = and + and / characters are removed from the string.

For example, s.filter(lambda x : True, name='') results in a runtime identifier of
Filter_oGwCfhWRg4.

The default mapping can be overridden by setting Topology.name_to_runtime_id to a callable
that returns a valid identifier for its single argument. The returned identifier should be unique with the
topology. For example usinig a pre-populated dict as the mapper:

topo = Topology()
names = {'', 'Buses', '':'Trains'}
topo.name_to_runtime_id = names.get

buses = toopo.source(..., name='')
trains = topo.source(..., name=''}

// buses.runtime_id will be Buses
// trains.runtime_id will be Trains

Returns Runtime identifier of the stream.

Return type str

New in version 1.14.

set_consistent(consistent_config)
Indicates that the stream is the start of a consistent region.

Parameters consistent_config (consistent.ConsistentRegionConfig) – the
configuration of the consistent region.

Returns Returns this stream.

Return type Stream

New in version 1.11.

set_parallel(width, name=None)
Set this source stream to be split into multiple channels as the start of a parallel region.

Calling set_parallel on a stream created by source() results in the stream having width channels,
each created by its own instance of the callable:

s = topo.source(S())
s.set_parallel(3)
f = s.filter(F())
e = f.end_parallel()

Each channel has independent instances of S and F. Tuples created by the instance of S in channel 0 are
passed to the instance of F in channel 0, and so on for channels 1 and 2.

Callable transforms instances within the channel can use the runtime functions channel(),
local_channel(), max_channels() & local_max_channels() to adapt to being invoked
in parallel. For example a source callable can use its channel number to determine which partition to read
from in a partitioned external system.

Calling set_parallel on a stream created by subscribe() results in the stream having width chan-
nels. Subscribe ensures that the stream will contain all published tuples matching the topic subscription

1.2. streamsx.topology.topology 29

streamsx Documentation, Release 1.14.7

and type. A published tuple will appear on one of the channels though the specific channel is not known
in advance.

A parallel region is terminated by end_parallel() or for_each().

The number of channels is set by width which may be an int greater than zero or a submission parameter
created by Topology.create_submission_parameter().

With IBM Streams 4.3 or later the number of channels can be dynamically changed at runtime.

Parallel regions are started on non-source streams using parallel().

Parameters

• width – The degree of parallelism for the parallel region.

• name (str) – Name of the parallel region. Defaults to the name of this stream.

Returns Returns this stream.

Return type Stream

See also:

parallel(), end_parallel()

New in version 1.9.

Changed in version 1.11: name parameter added.

split(into, func, names=None, name=None)
Splits tuples from this stream into multiple independent streams using the supplied callable func.

For each tuple on the stream int(func(tuple)) is called, if the return is zero or positive then the
(unmodified) tuple will be present on one, and only one, of the output streams. The specific stream will be
at index int(func(tuple)) % N in the returned list, where N is the number of output streams. If the
return is negative then the tuple is dropped.

split is used to declare disparate transforms on each split stream. This differs to parallel() where
each channel has the same logic transforms.

Parameters

• into (int) – Number of streams the input is split into, must be greater than zero.

• func – Split callable that takes a single parameter for the tuple.

• names (list[str]) – Names of the returned streams, in order. If not supplied or a
stream doesn’t have an entry in names then a generated name is used. Entries are used to
generated the field names of the returned named tuple.

• name (str) – Name of the split transform, defaults to a generated name.

If invoking func for a tuple on the stream raises an exception then its processing element will terminate.
By default the processing element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions by return a true value from its __exit__
method. When an exception is suppressed no tuple is submitted to the filtered stream corresponding to the
input tuple that caused the exception.

Returns Named tuple of streams this stream is split across. All returned streams have the same
schema as this stream.

Return type namedtuple

30 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Type hints

The argument type hint on func is used (if present) to verify at topology declaration time that it is compat-
ible with the type of tuples on this stream.

Examples

Example of splitting a stream based upon message severity, dropping any messages with unknown severity,
and then performing different transforms for each severity:

msgs = topo.source(ReadMessages())
SEVS = {'H':0, 'M':1, 'L':2}
severities = msg.split(3, lambda SEVS.get(msg.get('SEV'), -1),

names=['high','medium','low'], name='SeveritySplit')

high_severity = severities.high
high_severity.for_each(SendAlert())

medium_severity = severities.medium
medium_severity.for_each(LogMessage())

low_severity = severities.low
low_severity.for_each(Archive())

See also:

parallel()

New in version 1.13.

union(streamSet)
Creates a stream that is a union of this stream and other streams

Parameters streamSet – a set of Stream objects to merge with this stream

Returns

Return type Stream

view(buffer_time=10.0, sample_size=10000, name=None, description=None, start=False)
Defines a view on a stream.

A view is a continually updated sampled buffer of a streams’s tuples. Views allow visibility into a stream
from external clients such as Jupyter Notebooks, the Streams console, Microsoft Excel or REST clients.

The view created by this method can be used by external clients and through the returned View object
after the topology is submitted. For example a Jupyter Notebook can declare and submit an application
with views, and then use the resultant View objects to visualize live data within the streams.

When the stream contains Python objects then they are converted to JSON.

Parameters

• buffer_time – Specifies the buffer size to use measured in seconds.

• sample_size – Specifies the number of tuples to sample per second.

• name (str) – Name of the view. Name must be unique within the topology. Defaults to
a generated name.

• description – Description of the view.

1.2. streamsx.topology.topology 31

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.excel.doc/doc/excel_overview.html

streamsx Documentation, Release 1.14.7

• start (bool) – Start buffering data when the job is submitted. If False then the view
starts buffering data when the first remote client accesses it to retrieve data.

Returns View object which can be used to access the data when the topology is submitted.

Return type streamsx.topology.topology.View

Note: Views are only supported when submitting to distributed contexts including Streaming Analytics
service.

class streamsx.topology.topology.View(name)
Bases: object

The View class provides access to a continuously updated sampling of data items on a Stream after submission.
A view object is produced by view(), and will access data items from the stream on which it is invoked.

For example, a View object could be created and used as follows:

>>> topology = Topology()
>>> rands = topology.source(lambda: iter(random.random, None))
>>> view = rands.view()
>>> submit(ContextTypes.DISTRIBUTED, topology)
>>> queue = view.start_data_fetch()
>>> for val in iter(queue.get, None):
... print(val)
...
0.6527
0.1963
0.0512

display(duration=None, period=2)
Display a view within a Jupyter or IPython notebook.

Provides an easy mechanism to visualize data on a stream using a view.

Tuples are fetched from the view and displayed in a table within the notebook cell using a pandas.
DataFrame. The table is continually updated with the latest tuples from the view.

This method calls start_data_fetch() and will call stop_data_fetch() when completed if
duration is set.

Parameters

• duration (float) – Number of seconds to fetch and display tuples. If None then the
display will be updated until stop_data_fetch() is called.

• period (float) – Maximum update period.

Note: A view is a sampling of data on a stream so tuples that are on the stream may not appear in the
view.

Note: Python modules ipywidgets and pandas must be installed in the notebook environment.

Warning: Behavior when called outside a notebook is undefined.

32 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

New in version 1.12.

fetch_tuples(max_tuples=20, timeout=None)
Fetch a number of tuples from this view.

Fetching of data must have been started with start_data_fetch() before calling this method.

If timeout is None then the returned list will contain max_tuples tuples. Otherwise if the timeout is
reached the list may contain less than max_tuples tuples.

Parameters

• max_tuples (int) – Maximum number of tuples to fetch.

• timeout (float) – Maximum time to wait for max_tuples tuples.

Returns List of fetched tuples.

Return type list

New in version 1.12.

start_data_fetch()
Starts a background thread which begins accessing data from the remote Stream. The data items are placed
asynchronously in a queue, which is returned from this method.

Returns A Queue object which is populated with the data items of the stream.

Return type queue.Queue

stop_data_fetch()
Terminates the background thread fetching stream data items.

class streamsx.topology.topology.PendingStream(topology)
Bases: object

Pending stream connection.

A pending stream is an initially disconnected stream. The stream attribute can be used as an input stream when
the required stream is not yet available. Once the required stream is available the connection is made using
complete().

The schema of the pending stream is defined by the stream passed into complete.

A simple example is creating a source stream after the filter that will use it:

Create the pending or placeholder stream
pending_source = PendingStream(topology)

Create a filter against the placeholder stream
f = pending_source.stream.filter(lambda : t : t.startswith("H"))

source = topology.source(['Hello', 'World'])

Now complete the connection
pending_source.complete(source)

Streams allows feedback loops in its flow graphs, where downstream processing can produce a stream that is
fed back into the input port of an upstream operator. Typically, feedback loops are used to modify the state of
upstream transformations, rather than repeat processing of tuples.

A feedback loop can be created by using a PendingStream. The upstream transformation or operator that will
end the feedback loop uses stream as one of its inputs. A processing pipeline is then created and once the
downstream starting point of the feedback loop is available, it is passed to complete() to create the loop.

1.2. streamsx.topology.topology 33

streamsx Documentation, Release 1.14.7

complete(stream)
Complete the pending stream.

Any connections made to stream are connected to stream once this method returns.

Parameters stream (Stream) – Stream that completes the connection.

is_complete()
Has this connection been completed.

class streamsx.topology.topology.Window(stream, window_type)
Bases: object

Declaration of a window of tuples on a Stream.

A Window enables transforms against collection (or window) of tuples on a stream rather than per-tuple trans-
forms. Windows are created against a stream using Stream.batch() or Stream.last().

Supported transforms are:

• aggregate() - Aggregate the window contents into a single tuple.

A window is optionally partitioned to create independent sub-windows per partition key.

A Window can be also passed as the input of an SPL operator invocation to indicate the operator’s input port is
windowed.

Example invoking the SPL Aggregate operator with a sliding window of the last two minutes, triggering every
five tuples:

win = s.last(datetime.timedelta(minutes=2)).trigger(5)

agg = op.Map('spl.relational::Aggregate', win,
schema = 'tuple<uint64 sum, uint64 max>')

agg.sum = agg.output('Sum(val)')
agg.max = agg.output('Max(val)')

aggregate(function, name=None)
Aggregates the contents of the window when the window is triggered.

Upon a window trigger, the supplied function is passed a list containing the contents of the window:
function(items). The order of the window items in the list are the order in which they were each
received by the window. If the function’s return value is not None then the result will be submitted as a
tuple on the returned stream. If the return value is None then no tuple submission will occur.

For example, a window that calculates a moving average of the last 10 tuples could be written as follows:

win = s.last(10).trigger(1)
moving_averages = win.aggregate(lambda tuples: sum(tuples)/len(tuples))

When the window is partitioned then each partition is triggered and aggregated using function inde-
pendently.

For example, this partitioned window aggregation will independently call summarize_sensors
with ten tuples all having the same id when triggered. Each partition triggers independently so that
summarize_sensors is invoked for a specific id every time two tuples with that id have been inserted
into the window partition:

win = s.last(10).trigger(2).partition(key='id')
moving_averages = win.aggregate(summarize_sensors)

34 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Note: If a tumbling (batch()) window’s stream is finite then a final aggregation is performed if the
window is not empty. Thus function may be passed fewer tuples for a window sized using a count.
For example a stream with 105 tuples and a batch size of 25 tuples will perform four aggregations with 25
tuples each and a final aggregation of 5 tuples.

Parameters

• function – The function which aggregates the contents of the window

• name (str) – The name of the returned stream. Defaults to a generated name.

Returns A Stream of the returned values of the supplied function.

Return type Stream

Warning: In Python 3.5 or later if the stream being aggregated has a structured schema that contains a
blob type then any blob value will not be maintained in the window. Instead its memoryview object
will have been released. If the blob value is required then perform a map() transformation (without
setting schema) copying any required blob value in the tuple using memoryview.tobytes().

New in version 1.8.

Changed in version 1.11: Support for aggregation of streams with structured schemas.

Changed in version 1.13: Support for partitioned aggregation.

partition(key)
Declare a window with this window’s eviction and trigger policies, and a partition.

In a partitioned window, a subwindow will be created for each distinct value received for the attribute used
for partitioning. Each subwindow is treated as if it were a separate window, and each subwindow shares
the same trigger and eviction policy.

The key may either be a string containing the name of an attribute, or a python callable.

The key parameter may be a string only with a structured schema, and the value of the key parameter must
be the name of a single attribute in the schema.

The key parameter may be a python callable object. If it is, the callable is evaluated for each tuple, and
the return from the callable determines the partition into which the tuple is placed. The return value must
have a __hash__ method. If checkpointing is enabled, and the callable object has a state, the state of
the callable object will be saved and restored in checkpoints. However, __enter__ and __exit__
methods may not be called on the callable object.

Parameters key – The name of the attribute to be used for partitioning, or the python callable
object used for partitioning.

Returns Window that will be triggered.

Return type Window

New in version 1.13.

trigger(when=1)
Declare a window with this window’s size and a trigger policy.

When the window is triggered is defined by when.

1.2. streamsx.topology.topology 35

streamsx Documentation, Release 1.14.7

If when is an int then the window is triggered every when tuples. For example, with when=5 the window
will be triggered every five tuples.

If when is an datetime.timedelta then it is the period of the trigger. With a timedelta representing one
minute then the window is triggered every minute.

By default, when trigger has not been called on a Window it triggers for every tuple inserted into the
window (equivalent to when=1).

Parameters when – The size of the window, either an int to define the number of tuples or
datetime.timedelta to define the duration of the window.

Returns Window that will be triggered.

Return type Window

Warning: A trigger is only supported for a sliding window such as one created by last().

class streamsx.topology.topology.Sink(op)
Bases: streamsx._streams._placement._Placement, object

Termination of a Stream.

A Stream is terminated by processing that typically sends the tuples to an external system.

Note: A Stream may have multiple terminations.

See also:

for_each(), publish(), print()

New in version 1.7.

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

36 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

1.3 streamsx.topology.context

Context for submission and build of topologies.

1.3.1 Module contents

Functions

build Build a topology to produce a Streams application bun-
dle.

run Run a topology in a distributed Streams instance.
submit Submits a Topology (application) using the specified

context type.

1.3. streamsx.topology.context 37

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

Classes

ConfigParams Configuration options which may be used as keys in
submit() config parameter.

ContextTypes Submission context types.
JobConfig Job configuration.
SubmissionResult Passed back to the user after a call to submit.

class streamsx.topology.context.ContextTypes
Bases: object

Submission context types.

A Topology is submitted using submit() and a context type. Submision of a Topology generally builds the
application into a Streams application bundle (sab) file and then submits it for execution in the required context.

The Streams application bundle contains all the artifacts required by an application such that it can be executed
remotely (e.g. on a Streaming Analytics service), including distributing the execution of the application across
multiple resources (hosts).

The context type defines which context is used for submission.

The main context types result in a running application and are:

• STREAMING_ANALYTICS_SERVICE - Application is submitted to a Streaming Analytics service run-
ning on IBM Cloud.

• DISTRIBUTED - Application is submitted to an IBM Streams instance.

• STANDALONE - Application is executed as a local process, IBM Streams standalone application. Typi-
cally this is used during development or testing.

The BUNDLE context type compiles the application (Topology) to produce a Streams application bundle (sab
file). The bundle is not executed but may subsequently be submitted to a Streaming Analytics service or an IBM
Streams instance. A bundle may be submitted multiple times to services or instances, each resulting in a unique
job (running application).

BUILD_ARCHIVE = 'BUILD_ARCHIVE'
Creates a build archive.

This context type produces the intermediate code archive used for bundle creation.

Note: BUILD_ARCHIVE is typically only used when diagnosing issues with bundle generation.

BUNDLE = 'BUNDLE'
Create a Streams application bundle.

The Topology is compiled to produce Streams application bundle (sab file).

The resultant application can be submitted to:

• Streaming Analytics service using the Streams console or the Streaming Analytics REST api.

• IBM Streams instance using the Streams console, JMX api or command line streamtool
submitjob.

• Executed standalone for development or testing.

The bundle must be built on the same operating system version and architecture as the intended running
environment. For Streaming Analytics service this is currently RedHat/CentOS 7 and x86_64 architecture.

38 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

IBM Cloud Pak for Data integated configuration

Projects (within cluster)

The Topology is compiled using the Streams build service for a Streams service instance running in the
same Cloud Pak for Data cluster as the Jupyter notebook or script declaring the application.

The instance is specified in the configuration passed into submit(). The code that selects a service
instance by name is:

from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName')

topo = Topology()
...
submit(ContextTypes.BUNDLE, topo, cfg)

The resultant cfg dict may be augmented with other values such as keys from ConfigParams.

External to cluster or project

The Topology is compiled using the Streams build service for a Streams service instance running in Cloud
Pak for Data.

Environment variables: These environment variables define how the application is built and submitted.

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current
operating system user name.

• STREAMS_PASSWORD - Password for authentication.

IBM Cloud Pak for Data standalone configuration

The Topology is compiled using the Streams build service.

Environment variables: These environment variables define how the application is built.

• STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as
node port: https://<NODE-IP>:<NODE-PORT>

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current
operating system user name.

• STREAMS_PASSWORD - Password for authentication.

IBM Streams on-premise 4.2 & 4.3

The Topology is compiled using a local IBM Streams installation.

Environment variables: These environment variables define how the application is built.

• STREAMS_INSTALL - Location of a local IBM Streams installation.

DISTRIBUTED = 'DISTRIBUTED'
Submission to an IBM Streams instance.

1.3. streamsx.topology.context 39

streamsx Documentation, Release 1.14.7

IBM Cloud Pak for Data integated configuration

Projects (within cluster)

The Topology is compiled using the Streams build service and submitted to an Streams service instance
running in the same Cloud Pak for Data cluster as the Jupyter notebook or script declaring the application.

The instance is specified in the configuration passed into submit(). The code that selects a service
instance by name is:

from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName')

topo = Topology()
...
submit(ContextTypes.DISTRIBUTED, topo, cfg)

The resultant cfg dict may be augmented with other values such as a JobConfig or keys from
ConfigParams.

External to cluster or project

The Topology is compiled using the Streams build service and submitted to a Streams service instance
running in Cloud Pak for Data.

Environment variables: These environment variables define how the application is built and submitted.

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current
operating system user name.

• STREAMS_PASSWORD - Password for authentication.

IBM Cloud Pak for Data standalone configuration

The Topology is compiled using the Streams build service and submitted to a Streams service instance
using REST apis.

Environment variables: These environment variables define how the application is built and submitted.

• STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as
node port: https://<NODE-IP>:<NODE-PORT>

• STREAMS_REST_URL - Streams SWS service (REST API) URL, e.g. when the service is
exposed as node port: https://<NODE-IP>:<NODE-PORT>

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current
operating system user name.

• STREAMS_PASSWORD - Password for authentication.

40 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

IBM Streams on-premise 4.2 & 4.3

The Topology is compiled locally and the resultant Streams application bundle (sab file) is submitted to an
IBM Streams instance.

Environment variables: These environment variables define how the application is built and submitted.

• STREAMS_INSTALL - Location of a IBM Streams installation (4.2 or 4.3).

• STREAMS_DOMAIN_ID - Domain identifier for the Streams instance.

• STREAMS_INSTANCE_ID - Instance identifier.

• STREAMS_ZKCONNECT - (optional) ZooKeeper connection string for domain (when not
using an embedded ZooKeeper)

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current
operating system user name.

Warning: streamtool is used to submit the job with on-premise 4.2 & 4.3 Streams and requires
that streamtool does not prompt for authentication. This is achieved by using streamtool
genkey.

See also:

Generating authentication keys for IBM Streams

STANDALONE = 'STANDALONE'
Build and execute locally.

Compiles and executes the Topology locally in IBM Streams standalone mode as a separate sub-process.
Typically used for devlopment and testing.

The call to submit() return when (if) the application completes. An application completes when it has
finite source streams and all tuples from those streams have been processed by the complete topology. If
the source streams are infinite (e.g. reading tweets) then the standalone application will not complete.

Environment variables: This environment variables define how the application is built.

• STREAMS_INSTALL - Location of a IBM Streams installation (4.0.1 or later).

STREAMING_ANALYTICS_SERVICE = 'STREAMING_ANALYTICS_SERVICE'
Submission to Streaming Analytics service running on IBM Cloud.

The Topology is compiled and the resultant Streams application bundle (sab file) is submitted for execution
on the Streaming Analytics service.

When STREAMS_INSTALL is not set or the submit() config parameter has
FORCE_REMOTE_BUILD set to True the compilation of the application occurs remotely by the
service. This allows creation and submission of Streams applications without a local install of IBM
Streams.

When STREAMS_INSTALL is set and the submit() config parameter has FORCE_REMOTE_BUILD
set to False or not set then the creation of the Streams application bundle occurs locally and the bundle is
submitted for execution on the service.

Environment variables: These environment variables define how the application is built and submitted.

• STREAMS_INSTALL - (optional) Location of a IBM Streams installation (4.0.1 or later). The
install must be running on RedHat/CentOS 6 and x86_64 architecture.

1.3. streamsx.topology.context 41

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html

streamsx Documentation, Release 1.14.7

TOOLKIT = 'TOOLKIT'
Creates an SPL toolkit.

Topology applications are implemented as an SPL application before compilation into an Streams applica-
tion bundle. This context type produces the intermediate SPL toolkit that is input to the SPL compiler for
bundle creation.

Note: TOOLKIT is typically only used when diagnosing issues with bundle generation.

class streamsx.topology.context.ConfigParams
Bases: object

Configuration options which may be used as keys in submit() config parameter.

FORCE_REMOTE_BUILD = 'topology.forceRemoteBuild'
Force a remote build of the application.

When submitting to STREAMING_ANALYTICS_SERVICE a local build of the Streams application bun-
dle will occur if the environment variable STREAMS_INSTALL is set. Setting this flag to True ignores
the local Streams install and forces the build to occur remotely using the service.

JOB_CONFIG = 'topology.jobConfigOverlays'
Key for a JobConfig object representing a job configuration for a submission.

SC_OPTIONS = 'topology.sc.options'
Options to be passed to IBM Streams sc command.

A topology is compiled into a Streams application bundle (sab) using the SPL compiler sc.

Additional options to be passed to sc may be set using this key. The value can be a single string option
(e.g. --c++std=c++11 to select C++ 11 compilation) or a list of strings for multiple options.

Setting sc options may be required when invoking SPL operators directly or testing SPL applications.

Warning: Options that modify the requested submission context (e.g. setting a different main com-
posite) or deprecated options should not be specified.

New in version 1.12.10.

SERVICE_DEFINITION = 'topology.service.definition'
Streaming Analytics service definition. Identifies the Streaming Analytics service to use. The definition
can be one of

• The service credentials copied from the Service credentials page of the service console (not the
Streams console). Credentials are provided in JSON format. They contain such as the API key and
secret, as well as connection information for the service.

• A JSON object (dict) of the form: { "type": "streaming-analytics", "name":
"service name", "credentials": {...} } with the service credentials as the value
of the credentials key.

This key takes precedence over VCAP_SERVICES and SERVICE_NAME.

See also:

Service definition

SERVICE_NAME = 'topology.service.name'
Streaming Analytics service name.

42 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Selects the specific Streaming Analytics service from VCAP service definitions defined by the the envi-
ronment variable VCAP_SERVICES or the key VCAP_SERVICES in the submit config.

See also:

Selecting the service

SSL_VERIFY = 'topology.SSLVerify'
Key for the SSL verification value passed to requests as its verify option for distributed contexts. By
default set to True.

Note: Only True or False is supported. Behaviour is undefined when passing a path to a CA_BUNDLE
file or directory with certificates of trusted CAs.

New in version 1.11.

STREAMS_CONNECTION = 'topology.streamsConnection'
Key for a StreamsConnection object for connecting to a running IBM Streams instance. Only sup-
ported for Streams 4.2, 4.3. Requires environment variable STREAMS_INSTANCE_ID to be set.

VCAP_SERVICES = 'topology.service.vcap'
Streaming Analytics service definitions including credentials in VCAP_SERVICES format.

Provides the connection credentials when connecting to a Streaming Analytics service using context type
STREAMING_ANALYTICS_SERVICE. The streaming-analytics service to use within the ser-
vice definitions is identified by name using SERVICE_NAME.

The key overrides the environment variable VCAP_SERVICES.

The value can be:

• Path to a local file containing a JSON representation of the VCAP services information.

• Dictionary containing the VCAP services information.

See also:

VCAP services

class streamsx.topology.context.JobConfig(job_name=None, job_group=None,
preload=False, data_directory=None, trac-
ing=None)

Bases: object

Job configuration.

JobConfig allows configuration of job that will result from submission of a Topology (application).

A JobConfig is set in the config dictionary passed to submit() using the key JOB_CONFIG. add() exists as
a convenience method to add it to a submission configuration.

A JobConfig can also be used when submitting a Streams application bundle through the Streaming Analytics
REST API method submit_job().

Parameters

• job_name (str) – The name that is assigned to the job. A job name must be unique
within a Streasm instance When set to None a system generated name is used.

• job_group (str) – The job group to use to control permissions for the submitted job.

• preload (bool) – Specifies whether to preload the job onto all resources in the instance,
even if the job is not currently needed on each. Preloading the job can improve PE restart
performance if the PEs are relocated to a new resource.

1.3. streamsx.topology.context 43

streamsx Documentation, Release 1.14.7

• data_directory (str) – Specifies the location of the optional data directory. The data
directory is a path within the cluster that is running the Streams instance.

• tracing – Specify the application trace level. See tracing

Example:

Submit a job with the name NewsIngester
cfg = {}
job_config = JobConfig(job_name='NewsIngester')
job_config.add(cfg)
context.submit('STREAMING_ANALYTICS_SERVICE', topo, cfg)

See also:

Job configuration overlays reference

add(config)
Add this JobConfig into a submission configuration object.

Parameters config (dict) – Submission configuration.

Returns config.

Return type dict

as_overlays()
Return this job configuration as a complete job configuration overlays object.

Converts this job configuration into the full format supported by IBM Streams. The returned dict contains:

• jobConfigOverlays key with an array containing a single job configuration overlay.

• an optional comment key containing the comment str.

For example with this JobConfig:

jc = JobConfig(job_name='TestIngester')
jc.comment = 'Test configuration'
jc.target_pe_count = 2

the returned dict would be:

{"comment": "Test configuration",
"jobConfigOverlays":

[{"jobConfig": {"jobName": "TestIngester"},
"deploymentConfig": {"fusionTargetPeCount": 2, "fusionScheme": "manual

→˓"}}]}

The returned overlays object can be saved as JSON in a file using json.dump. A file can be used with
job submission mechanisms that support a job config overlays file, such as streamtool submitjob
or the IBM Streams console.

Example of saving a JobConfig instance as a file:

jc = JobConfig(job_name='TestIngester')
with open('jobconfig.json', 'w') as f:

json.dump(jc.as_overlays(), f)

Returns Complete job configuration overlays object built from this object.

Return type dict

44 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html

streamsx Documentation, Release 1.14.7

New in version 1.9.

property comment
Comment for job configuration.

The comment does not change the functionality of the job configuration.

Returns Comment text, None if it has not been set.

Return type str

New in version 1.9.

static from_overlays(overlays)
Create a JobConfig instance from a full job configuration overlays object.

All logical items, such as comment and job_name, are extracted from overlays. The remaining infor-
mation in the single job config overlay in overlays is set as raw_overlay.

Parameters overlays (dict) – Full job configuration overlays object.

Returns Instance representing logical view of overlays.

Return type JobConfig

New in version 1.9.

property raw_overlay
Raw Job Config Overlay.

A submitted job is configured using Job Config Overlay which is represented as a JSON. JobConfig ex-
poses Job Config Overlay logically with properties such as job_name and tracing. This property (as
a dict) allows merging of the configuration defined by this object and raw representation of a Job Config
Overlay. This can be used when a capability of Job Config Overlay is not exposed logically through this
class.

For example, the threading model can be set by:

jc = streamsx.topology.context.JobConfig()
jc.raw_overlay = {'deploymentConfig': {'threadingModel': 'manual'}}

Any logical items set by this object overwrite any set with raw_overlay. For example this sets the job
name to to value set in the constructor (DBIngest) not the value in raw_overlay (Ingest):

jc = streamsx.topology.context.JobConfig(job_name='DBIngest')
jc.raw_overlay = {'jobConfig': {'jobName': 'Ingest'}}

Note: Contents of raw_overlay is a dict that is must match a single Job Config Overlay and be
serializable as JSON to the correct format.

See also:

Job Config Overlay reference

New in version 1.9.

property submission_parameters
Job submission parameters.

Submission parameters values for the job. A dict object that maps submission parameter names to values.

New in version 1.9.

1.3. streamsx.topology.context 45

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html

streamsx Documentation, Release 1.14.7

property target_pe_count
Target processing element count.

When submitted against a Streams instance target_pe_count provides a hint to the scheduler as to how to
partition the topology across processing elements (processes) for the job execution. When a job contains
multiple processing elements (PEs) then the Streams scheduler can distributed the PEs across the resources
(hosts) running in the instance.

When set to None (the default) no hint is supplied to the scheduler. The number of PEs in the submitted
job will be determined by the scheduler.

The value is only a target and may be ignored when the topology contains isolate() calls.

Note: Only supported in Streaming Analytics service and IBM Streams 4.2 or later.

property tracing
Runtime application trace level.

The runtime application trace level can be a string with value error, warn, info, debug or trace.

In addition a level from Python logging module can be used in with CRITICAL and ERROR mapping
to error, WARNING to warn, INFO to info and DEBUG to debug.

Setting tracing to None or logging.NOTSETwill result in the job submission using the Streams instance
application trace level.

The value of tracing is the level as a string (error, warn, info, debug or trace) or None.

class streamsx.topology.context.SubmissionResult(results)
Bases: object

Passed back to the user after a call to submit. Allows the user to use dot notation to access dictionary elements.

cancel_job_button(description=None)
Display a button that will cancel the submitted job.

Used in a Jupyter IPython notebook to provide an interactive mechanism to cancel a job submitted from
the notebook.

Once clicked the button is disabled unless the cancel fails.

A job may be cancelled directly using:

submission_result = submit(ctx_type, topology, config)
submission_result.job.cancel()

Parameters description (str) – Text used as the button description, defaults to value
based upon the job name.

Warning: Behavior when called outside a notebook is undefined.

New in version 1.12.

property job
REST binding for the job associated with the submitted build.

Returns REST binding for running job or None if connection information was not available or
no job was submitted.

46 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Return type Job

streamsx.topology.context.submit(ctxtype, graph, config=None, username=None, pass-
word=None)

Submits a Topology (application) using the specified context type.

Used to submit an application for compilation into a Streams application and execution within an Streaming
Analytics service or IBM Streams instance.

ctxtype defines how the application will be submitted, see ContextTypes.

The parameters username and password are only required when submitting to an IBM Streams instance and it
is required to access the Streams REST API from the code performing the submit. Accessing data from views
created by view() requires access to the Streams REST API.

Parameters

• ctxtype (str) – Type of context the application will be submitted to. A value from
ContextTypes.

• graph (Topology) – The application topology to be submitted.

• config (dict) – Configuration for the submission.

• username (str) – Deprecated: Username for the Streams REST api. Use environment
variable STREAMS_USERNAME if using user-password authentication.

• password (str) – Deprecated: Password for username. Use environment variable
STREAMS_PASSWORD if using user-password authentication.

Returns Result of the submission. For details of what is contained see the ContextTypes con-
stant passed as ctxtype.

Return type SubmissionResult

streamsx.topology.context.build(topology, config=None, dest=None, verify=None)
Build a topology to produce a Streams application bundle.

Builds a topology using submit() with context type BUNDLE. The result is a sab file on the local file system
along with a job config overlay file matching the application.

The build uses a build service or a local install, see BUNDLE for details.

Parameters

• topology (Topology) – Application topology to be built.

• config (dict) – Configuration for the build.

• dest (str) – Destination directory for the sab and JCO files. Default is context specific.

• verify – SSL verification used by requests when using a build service. Defaults to en-
abling SSL verification.

Returns

3-element tuple containing

• bundle_path (str): path to the bundle (sab file) or None if not created.

• jco_path (str): path to file containing the job config overlay for the application or None if
not created.

• result (SubmissionResult): value returned from submit.

1.3. streamsx.topology.context 47

streamsx Documentation, Release 1.14.7

See also:

BUNDLE for details on how to configure the build service to use.

New in version 1.14.

streamsx.topology.context.run(topology, config=None, job_name=None, verify=None, ctx-
type='DISTRIBUTED')

Run a topology in a distributed Streams instance.

Runs a topology using submit() with context type DISTRIBUTED (by default). The result is running
Streams job.

Parameters

• topology (Topology) – Application topology to be run.

• config (dict) – Configuration for the build.

• job_name (str) – Optional job name. If set will override any job name in config.

• verify – SSL verification used by requests when using a build service. Defaults to en-
abling SSL verification.

• ctxtype (str) – Context type for submission.

Returns

2-element tuple containing

• job (Job): REST binding object for the running job or None if no job was submitted.

• result (SubmissionResult): value returned from submit.

See also:

DISTRIBUTED for details on how to configure the Streams instance to use.

New in version 1.14.

1.4 streamsx.topology.schema

Schemas for streams.

1.4.1 Overview

A stream represents an unbounded flow of tuples with a declared schema so that each tuple on the stream complies
with the schema. A stream’s schema may be one of:

• StreamsSchema structured schema - a tuple is a sequence of attributes, and an attribute is a named value of
a specific type.

• Json a tuple is a JSON object.

• String a tuple is a string.

• Python a tuple is any Python object, effectively an untyped stream.

48 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

1.4.2 Structured schemas

A structured schema is a sequence of attributes, and an attribute is a named value of a specific type. For example a
stream of sensor readings can be represented as a schema with three attributes sensor_id, ts and reading with
types of int64, int64 and float64 respectively.

This schema can be declared a number of ways:

Python 3.6:

class SensorReading(typing.NamedTuple):
sensor_id: int
ts: int
reading: float

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

SensorReading = typing.NamedTuple('SensorReading',
[('sensor_id', int), ('ts', int), ('reading', float)]

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

sensors = raw_readings.map(parse_sensor,
schema='tuple<int64 sensor_id, int64 ts, float64 reading>')

The supported types are defined by IBM Streams and are listed in StreamSchema.

Structured schemas provide type-safety and efficient network serialization when compared to passing a dict using
Python streams.

Streams with structured schemas can be interchanged with any IBM Streams application using publish() and
subscribe() maintaining type safety.

1.4.3 Defining a stream’s schema

Every stream within a Topology has defined schema. The schema may be defined explictly (for example map() or
subscribe()) or implicity (for example filter() produces a stream with the same schema as its input stream).

Explictly defining a stream’s schema is flexible and various types of values are accepted as the schema.

• Builtin types as aliases for common schema types:

– json (module) - for Json

– str - for String

– object - for Python

• Values of the enumeration CommonSchema

• An instance of typing.NamedTuple (Python 3)

• An instance of StreamSchema

• A string of the format tuple<...> defining the attribute names and types. See StreamSchema for details
on the format and types supported.

1.4. streamsx.topology.schema 49

streamsx Documentation, Release 1.14.7

• A string containing a namespace qualified SPL stream type (e.g. com.ibm.streams.
geospatial::FlightPathEncounterTypes.Observation3D)

1.4.4 Module contents

Functions

is_common Is schema an common schema.

Classes

CommonSchema Common stream schemas for interoperability within
Streams applications.

StreamSchema Defines a schema for a structured stream.

streamsx.topology.schema.is_common(schema)
Is schema an common schema.

Parameters schema – Scheme to test.

Returns True if schema is a common schema, otherwise False.

Return type bool

class streamsx.topology.schema.StreamSchema(schema)
Bases: object

Defines a schema for a structured stream.

On a structured stream a tuple is a sequence of attributes, and an attribute is a named value of a specific type.

The supported types are defined by IBM Streams and include such types as int8, int16, rstring and list<float32>.

A structured schema can be defined using a typing.NamedTuple in Python 3, a string with the syntax
tuple<type name [,...]> or an instance of this class.

typing.NamedTuple:

A typing.NamedTuple can be used to define a structured schema with the field names and types
mapping to the structured schema attribute names and types.

Python types are mapped to IBM Streams types as follows:

50 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Python type IBM Streams type
str rstring
bool boolean
int int64
float float64
decimal.Decimal decimal128
complex complex64
bytes blob
streamsx.spl.types.Timestamp timestamp
datetime.datetime timestamp
typing.List[T] list<T>
typing.Set[T] set<T>
typing.Mapping[K,V] map<K,V>
typing.Optional[T] optional<T>

Note: Tuples on a stream with a schema defined by a typing.NamedTuple instance are passed
into callables as instance of a named tuple with the the correct field names and types. This is not
guaranteed to be the same class instance as the one used to declare the schema.

Tuple string:

A string of the format tuple<type name [,. . .]> can be used to define a structured schema, where type
is an IBM Streams type.

Example:

tuple<rstring id, timestamp ts, float64 value>

represents a schema with three attributes suitable for a sensor reading.

IBM Streams types:

Type Description Python representation Conversion from
Python

boolean True or False bool bool(value)
int8 8-bit signed integer int int(value) trun-

cated to 8 bits
int16 16-bit signed integer int int(value) trun-

cated to 16 bits
int32 32-bit signed integer int int(value) trun-

cated to 32 bits
int64 64-bit signed integer int int(value)
uint8 8-bit unsigned integer int

•

uint16 16-bit unsigned integer int
•

uint32 32-bit unsigned integer int
•

Continued on next page

1.4. streamsx.topology.schema 51

streamsx Documentation, Release 1.14.7

Table 7 – continued from previous page
Type Description Python representation Conversion from

Python
uint64 64-bit unsigned integer int

•

float32 32-bit binary floating
point

float float(value) trun-
cated to 32 bits

float64 64-bit binary floating
point

float float(value)

decimal32 32-bit decimal floating
point

decimal.Decimal decimal.
Decimal(value)
normalized to IEEE 754
decimal32

decimal64 64-bit decimal floating
point

decimal.Decimal decimal.
Decimal(value)
normalized to IEEE 754
decimal64

decimal128 128-bit decimal floating
point

decimal.Decimal decimal.
Decimal(value)
normalized to IEEE 754
decimal128

complex32 complex with float32
values

complex complex(value)
with real and imaginary
values truncated to 32
bits

complex64 complex with float64
values

complex complex(value)

timestamp Nanosecond timestamp Timestamp
•

rstring UTF-8 string str str(value)
rstring[N] Bounded UTF-8 string str str(value)
ustring UTF-16 string str str(value)
blob Sequence of bytes memoryview

•

list<T> List with elements of
type T

list
•

list<T>[N] Bounded list list
•

set<T> Set with elements of
type T

set
•

set<T>[N] Bounded set set
•

map<K,V> Map with typed keys and
values

dict
•

Continued on next page

52 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Table 7 – continued from previous page
Type Description Python representation Conversion from

Python
map<K,V>[N] Bounded map, limted to

N pairs
dict

•

optional<T> Optional value of type T Value of type T, or None Value of for type T
enum{id [,...]} Enumeration Not supported Not supported
xml XML value Not supported Not supported
tuple<type name
[, ...]>

Nested tuple Not supported Not supported

Note: Type optional<T> requires IBM Streams 4.3 or later.

Python representation is how an attribute value in a structured schema is passed into a Python function.

Conversion from Python indicates how a value from Python is converted to an attribute value in a structured
schema. For example a value v assigned to float64 attribute is converted as though float(v) is called
first, thus v may be a float, int or any type that has a __float__ method.

When a type is not supported in Python it can only be used in a schema used for streams produced and consumed
by invocation of SPL operators.

A StreamSchema can be created by passing a string of the form tuple<...> or by passing the
name of an SPL type from an SPL toolkit, for example com.ibm.streamsx.transportation.
vehicle::VehicleLocation.

Attribute names must start with an ASCII letter or underscore, followed by ASCII letters, digits, or underscores.

When a tuple on a structured stream is passed into a Python callable it is converted to a dict, tuple or named
tuple object containing all attributes of the stream tuple. See style(), as_dict() and as_tuple() for
details.

When a Python object is submitted to a structured stream, for example as the return from the function invoked
in a map() with the schema parameter set, it must be:

• A Python dict. Attributes are set by name using value in the dict for the name. If a value does not exist
(the name does not exist as a key) or is set to None then the attribute has its default value, zero, false, empty
list or string etc.

• A Python tuple or named tuple. Attributes are set by position, with the first attribute being the value at
index 0 in the Python tuple. If a value does not exist (the tuple has less values than the structured schema)
or is set to None then the attribute has its default value, zero, false, empty list or string etc.

Parameters schema (str) – Schema definition. Either a schema definition or the name of an SPL
type.

as_dict()
Create a structured schema that will pass stream tuples into callables as dict instances. This allows a
return to the default calling style for a structured schema.

If this instance represents a common schema then it will be returned without modification. Stream tuples
with common schemas are always passed according to their definition.

Returns Schema passing stream tuples as dict if allowed.

Return type StreamSchema

1.4. streamsx.topology.schema 53

streamsx Documentation, Release 1.14.7

New in version 1.8.

as_tuple(named=None)
Create a structured schema that will pass stream tuples into callables as tuple instances.

If this instance represents a common schema then it will be returned without modification. Stream tuples
with common schemas are always passed according to their definition.

Passing as tuple

When named evaluates to False then each stream tuple will be passed as a tuple. For exam-
ple with a structured schema of tuple<rstring id, float64 value> a value is passed as
('TempSensor', 27.4) and access to the first attribute is t[0] and the second as t[1] where
t represents the passed value..

Passing as named tuple

When named is True or a str then each stream tuple will be passed as a named tuple. For ex-
ample with a structured schema of tuple<rstring id, float64 value> a value is passed as
('TempSensor', 27.4) and access to the first attribute is t.id (or t[0]) and the second as t.
value (t[1]) where t represents the passed value.

Warning: If an schema’s attribute name is not a valid Python identifier or starts with an underscore
then it will be renamed as positional name _n. For example, with the schema tuple<int32 a,
int32 def, int32 id> the field names are a, _1, _2.

The value of named is used as the name of the named tuple class with StreamTuple used when named
is True.

It is not guaranteed that the class of the namedtuple is the same for all callables processing tuples with the
same structured schema, only that the tuple is a named tuple with the correct field names.

Parameters named – Pass stream tuples as a named tuple. If not set then stream tuples are
passed as instances of tuple.

Returns Schema passing stream tuples as tuple if allowed.

Return type StreamSchema

New in version 1.8.

New in version 1.9: Addition of named parameter.

extend(schema)
Extend a structured schema by another.

For example extending tuple<rstring id, timestamp ts, float64 value> with
tuple<float32 score> results in tuple<rstring id, timestamp ts, float64
value, float32 score>.

Parameters schema (StreamSchema) – Schema to extend this schema by.

Returns New schema that is an extension of this schema.

Return type StreamSchema

schema()
Private method. May be removed at any time.

property style
Style stream tuples will be passed into a callable.

For the common schemas the style is fixed:

54 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

• CommonSchema.Python - object - Stream tuples are arbitrary objects.

• CommonSchema.String - str - Stream tuples are unicode strings.

• CommonSchema.Json - dict - Stream tuples are a dict that represents the JSON object.

For a structured schema the supported styles are:

• dict - Stream tuples are passed as a dict with the key being the attribute name and and the value
the attribute value. This is the default.

– E.g. with a schema of tuple<rstring id, float32 value> a value is passed as
{'id':'TempSensor', 'value':20.3}.

• tuple - Stream tuples are passed as a tuple with the value being the attributes value in order. A
schema is set to pass stream tuples as tuples using as_tuple().

– E.g. with a schema of tuple<rstring id, float32 value> a value is passed as
('TempSensor', 20.3).

• namedtuple - Stream tuples are passed as a named tuple (see collections.namedtuple)
with the value being the attributes value in order. Field names correspond to the attribute names of
the schema. A schema is set to pass stream tuples as named tuples using as_tuple() setting the
named parameter.

Returns Class of tuples that will be passed into callables.

Return type type

New in version 1.8.

New in version 1.9: Support for namedtuple.

class streamsx.topology.schema.CommonSchema
Bases: enum.Enum

Common stream schemas for interoperability within Streams applications.

Streams application can publish streams that are subscribed to by other applications. Use of common schemas
allow streams connections regardless of the application implementation language.

Python applications publish streams using publish() and subscribe using subscribe().

• Python - Stream constains Python objects.

• Json - Stream contains JSON objects.

• String - Stream contains strings.

• Binary - Stream contains binary tuples.

• XML - Stream contains XML documents.

Binary = <streamsx.topology.schema.StreamSchema object>
Stream where each tuple is a binary object (sequence of bytes).

Warning: Binary is not yet supported for Python applications.

Json = <streamsx.topology.schema.StreamSchema object>
Stream where each tuple is logically a JSON object.

1.4. streamsx.topology.schema 55

streamsx Documentation, Release 1.14.7

Json can be used as a natural interchange format between Streams applications implemented in different
programming languages. All languages supported by Streams support publishing and subscribing to JSON
streams.

A Python callable receives each tuple as a dict as though it was created from json.
loads(json_formatted_str) where json_formatted_str is the JSON formatted representation of
tuple.

Python objects that are to be converted to JSON objects must be supported by JSONEncoder. If the object
is not a dict then it will be converted to a JSON object with a single key payload containing the value.

Python = <streamsx.topology.schema.StreamSchema object>
Stream where each tuple is a Python object. Each object must be picklable to allow execution in a dis-
tributed environment where streams can connect processes running on the same or different resources.

Python streams can only be used by Python applications.

String = <streamsx.topology.schema.StreamSchema object>
Stream where each tuple is a string.

String can be used as a natural interchange format between Streams applications implemented in different
programming languages. All languages supported by Streams support publishing and subscribing to string
streams.

A Python callable receives each tuple as a str object.

Python objects are converted to strings using str(obj).

XML = <streamsx.topology.schema.StreamSchema object>
Stream where each tuple is an XML document.

Warning: XML is not yet supported for Python applications.

extend(schema)
Extend a structured schema by another.

Parameters schema (StreamSchema) – Schema to extend this schema by.

Returns New schema that is an extension of this schema.

Return type StreamSchema

schema()
Private method. May be removed at any time.

1.5 streamsx.topology.state

Application state.

56 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

1.5.1 Overview

Stateful applications are ones that include callables that are classes and thus can maintain state as instance variables.

By default any state is reset to its initial state after a processing element (PE) restart. A restart may occur due to:

• a failure in the PE or its resource,

• a explicit PE restart request,

• or a parallel region width change (IBM Streams 4.3 or later)

The application or a portion of it may be configured to maintain state after a PE restart by one of two mechanisms.

• Consistent region. A consistent region is a subgraph where the states of callables become consistent by process-
ing all the tuples within defined points on a stream. After a PE restart all callables in the region are reset to the
last consistent point, so that the state of all callables represents the processing of the same input tuples to the
region.

– streamsx.topology.topology.Stream.set_consistent()

– ConsistentRegionConfig

– Consistent region overview

• Checkpointing, each stateful callable is checkpointed periodically and after a PE restart its callables are reset to
their most recent checkpointed state.

– streamsx.topology.topology.Topology.checkpoint_period

1.5.2 Stateful callables

Use of a class instance allows a transformation (for example map()) to be stateful by maintaining state in instance
attributes across invocations.

When the callable is in a consistent region or checkpointing then it is serialized using dill. The default serialization
may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This
is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See
https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the callable as __enter__ and __exit__ context manager methods then __enter__ is called after the object
has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as
open files or sockets.

1.5.3 Module contents

Classes

ConsistentRegionConfig A ConsistentRegionConfig configures a consis-
tent region.

class streamsx.topology.state.ConsistentRegionConfig(trigger=None, period=None,
drain_timeout=180,
reset_timeout=180,
max_consecutive_attempts=5)

Bases: object

A ConsistentRegionConfig configures a consistent region.

1.5. streamsx.topology.state 57

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/consistentregions.html
https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.7

The recommended way to create a ConsistentRegionConfig is to call either operator_driven()
or periodic().

Parameters

• trigger (ConsistentRegionConfig.Trigger) – Determines how the
drain/checkpoint cycle of the consistent region is triggered.

• period – The trigger period. If the trigger is PERIODIC, this must be specified, otherwise
it may not be specfied. This may be either a datetime.timedelta value or the number
of seconds as a float.

• drain_timeout – Indicates the maximum time in seconds that the drain and checkpoint
of the region is allotted to finish processing. If the process takes longer than the specified
time, a failure is reported and the region is reset to the point of the previously successfully es-
tablished consistent state. The value must be specified as either a datetime.timedelta
value or the number of seconds as a float. If not specified, the default value is 180 seconds.

• reset_timeout – Indicates the maximum time in seconds that the reset of the region is
allotted to finish processing. If the process takes longer than the specified time, a failure is
reported and another reset of the region is attempted. The value must be specified as either
a datetime.timedelta value or the number of seconds as a float. If not specified, the
default value is 180 seconds.

• max_consecutive_attempts (int) – Indicates the maximum number of consecutive
attempts to reset a consistent region. After a failure, if the maximum number of attempts is
reached, the region stops processing new tuples. After the maximum number of consecutive
attempts is reached, a region can be reset only with manual intervention or with a program
with a call to a method in the consistent region controller. This must be an integer value
between 1 and 2147483647, inclusive. If not specified, the default value is 5.

Example:

set source to be a the start of an operator driven consistent region
with a drain timeout of five seconds and a reset timeout of twenty seconds.
source.set_consistent(ConsistentRegionConfig.operatorDriven(drain_timeout=5,
→˓reset_timeout=20))

See also:

set_consistent()

New in version 1.11.

class Trigger
Bases: enum.Enum

Defines how the drain-checkpoint cycle of a consistent region is triggered. .. versionadded:: 1.11

OPERATOR_DRIVEN = 1
Region is triggered by the start operator.

PERIODIC = 2
Region is triggered periodically.

static operator_driven(drain_timeout=180, reset_timeout=180,
max_consecutive_attempts=5)

Define an operator-driven consistent region configuration. The source operator triggers drain and check-
point cycles for the region.

Parameters

58 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

• drain_timeout – The drain timeout, as either a datetime.timedelta value or
the number of seconds as a float. If not specified, the default value is 180 seconds.

• reset_timeout – The reset timeout, as either a datetime.timedelta value or
the number of seconds as a float. If not specified, the default value is 180 seconds.

• max_consecutive_attempts (int) – The maximum number of consecutive at-
tempts to reset the region. This must be an integer value between 1 and 2147483647,
inclusive. If not specified, the default value is 5.

Returns the configuration.

Return type ConsistentRegionConfig

static periodic(period, drain_timeout=180, reset_timeout=180, max_consecutive_attempts=5)
Create a periodic consistent region configuration. The IBM Streams runtime will trigger a drain and
checkpoint the region periodically at the time interval specified by period.

Parameters

• period – The trigger period. This may be either a datetime.timedelta value or
the number of seconds as a float.

• drain_timeout – The drain timeout, as either a datetime.timedelta value or
the number of seconds as a float. If not specified, the default value is 180 seconds.

• reset_timeout – The reset timeout, as either a datetime.timedelta value or
the number of seconds as a float. If not specified, the default value is 180 seconds.

• max_consecutive_attempts (int) – The maximum number of consecutive at-
tempts to reset the region. This must be an integer value between 1 and 2147483647,
inclusive. If not specified, the default value is 5.

Returns the configuration.

Return type ConsistentRegionConfig

1.6 streamsx.topology.composite

Composite transformations.

New in version 1.14.

1.6.1 Module contents

Classes

Composite Composite transformations support a single logical
transformation being a composite of one or more basic
transformations.

ForEach Abstract composite for each transformation.
Map Abstract composite map transformation.
Source Abstract composite source.

class streamsx.topology.composite.Composite
Bases: abc.ABC

1.6. streamsx.topology.composite 59

streamsx Documentation, Release 1.14.7

Composite transformations support a single logical transformation being a composite of one or more basic
transformations.

A composite transformation is implemented as a sub-class of Source, Map or ForEach whose populate
method populates the topology with the required basic transformations. For example a Source composite
might have use source() followed by a filter() to filter out unwanted events and then a map() to parse
the event into a structured schema.

Composites may use other composites during populate.

Composites can control how the basic transformations are visually represented. By default any transformations
within a composite are grouped visually. A composite may alter this using these attributes of the composite
instance:

• kind - Sets the name of operator kind for a group or single operator. Defaults to a combination of the
module and class name of the composite, e.g. streamsx.standard.utility::Sequence. Set to
a false value to disable any modification of the visual representation of the composite’s transformations.

• group - Set to a false value to disable any grouping of multiple transformations. Defaults to True to
enable grouping.

The values of kind and group are checked after the expansion of the composite using populate.

class streamsx.topology.composite.Source
Bases: streamsx.topology.composite.Composite

Abstract composite source.

An instance of a subclass can be passed to source() to create a source stream that is composed of one or
more basic transformations.

Example assuming RawTweets is Python iterable that produces raw tweets:

class Tweets(streamsx.topology.composite.Source):
def __init__(self, track):

self.track = track

def populate(self, topology, name, **options):
get all the tweets
tweets = topology.source(RawTweets(track=self.track), name=name)
filter so that only with a message are returned
return tweets.filter(lambda tweet : tweet['text'])

This class can then be used as follows:

topo = Topology()
gf_tweets = topo.source(Tweets(track=['glutenfree', 'gf']))

abstract populate(topology, name, **options)
Populate the topology with this composite source.

Parameters

• topology (Topology) – Topology containing the source.

• name (Optional[str]) – Name passed into source.

• **options – Future options passed to source.

Returns Single stream representing the source.

Return type Stream

60 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

class streamsx.topology.composite.Map
Bases: streamsx.topology.composite.Composite

Abstract composite map transformation.

An instance of a subclass can be passed to map() to create a stream that is composed of one or more basic
transformations of an input stream.

Example:

class WordCount(streamsx.topology.composite.Map):
def __init__(self, period, update):

self.period = period
self.update = update

def populate(self, topology, stream, schema, name, **options):
words = stream.flat_map(lambda line : line.split())
win = words.last(size=self.period).trigger(self.update).partition(lambda

→˓s : s)
return win.aggregate(lambda values : (values[0], len(values)))

abstract populate(topology, stream, schema, name, **options)
Populate the topology with this composite map transformation.

Parameters

• topology (Topology) – Topology containing the composite map.

• stream (Stream) – Stream to be transformed.

• schema (Union[StreamSchema, CommonSchema, str, NamedTuple]) – Schema
passed into map.

• name (Optional[str]) – Name passed into map.

• **options – Future options passed to map.

Returns Single stream representing the transformation of stream.

Return type Stream

class streamsx.topology.composite.ForEach
Bases: streamsx.topology.composite.Composite

Abstract composite for each transformation.

An instance of a subclass can be passed to for_each() to create a sink (stream termination) that is composed
of one or more basic transformations of an input stream.

abstract populate(topology, stream, name, **options)
Populate the topology with this composite for each transformation.

Parameters

• topology (Topology) – Topology containing the composite map.

• stream (Stream) – Stream to be transformed.

• name (Optional[str]) – Name passed into for_each.

• **options – Future options passed to for_each.

Returns Termination for this composite transformation of stream.

Return type Sink

1.6. streamsx.topology.composite 61

streamsx Documentation, Release 1.14.7

1.7 streamsx.topology.tester

Testing support for streaming applications.

1.7.1 Overview

Allows testing of a streaming application by creation conditions on streams that are expected to become valid during
the processing. Tester is designed to be used with Python’s unittest module.

A complete application may be tested or fragments of it, for example a sub-graph can be tested in isolation that takes
input data and scores it using a model.

Supports execution of the application on STREAMING_ANALYTICS_SERVICE, DISTRIBUTED or STANDALONE.

A Tester instance is created and associated with the Topology to be tested. Conditions are then created against
streams, such as a stream must receive 10 tuples using tuple_count().

Here is a simple example that tests a filter correctly only passes tuples with values greater than 5:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestSimpleFilter(unittest.TestCase):

def setUp(self):
Sets self.test_ctxtype and self.test_config
Tester.setup_streaming_analytics(self)

def test_filter(self):
Declare the application to be tested
topology = Topology()
s = topology.source([5, 7, 2, 4, 9, 3, 8])
s = s.filter(lambda x : x > 5)

Create tester and assign conditions
tester = Tester(topology)
tester.contents(s, [7, 9, 8])

Submit the application for test
If it fails an AssertionError will be raised.

tester.test(self.test_ctxtype, self.test_config)

A stream may have any number of conditions and any number of streams may be tested.

A local_check() is supported where a method of the unittest class is executed once the job becomes healthy. This
performs checks from the context of the Python unittest class, such as checking external effects of the application or
using the REST api to monitor the application.

A test fails-fast if any of the following occur:

• Any condition fails. E.g. a tuple failing a tuple_check().

• The local_check() (if set) raises an error.

• The job for the test:

– Fails to become healthy.

– Becomes unhealthy during the test run.

62 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

– Any processing element (PE) within the job restarts.

A test timeouts if it does not fail but its conditions do not become valid. The timeout is not fixed as an absolute test run
time, but as a time since “progress” was made. This can allow tests to pass when healthy runs are run in a constrained
environment that slows execution. For example with a tuple count condition of ten, progress is indicated by tuples
arriving on a stream, so that as long as gaps between tuples are within the timeout period the test remains running until
ten tuples appear.

Note: The test timeout value is not configurable.

Note: The submitted job (application under test) has additional elements (streams & operators) inserted to implement
the conditions. These are visible through various APIs including the Streams console raw graph view. Such elements
are put into the Tester category.

Note: The package streamsx.testing provides nose plugins to provide control over tests without having to modify
their source code.

Changed in version 1.9: - Python 2.7 supported (except with Streaming Analytics service).

1.7.2 Module contents

Classes

Tester Testing support for a Topology.

class streamsx.topology.tester.Tester(topology)
Bases: object

Testing support for a Topology.

Allows testing of a Topology by creating conditions against the contents of its streams.

Conditions may be added to a topology at any time before submission.

If a topology is submitted directly to a context then the graph is not modified. This allows testing code to be
inserted while the topology is being built, but not acted upon unless the topology is submitted in test mode.

If a topology is submitted through the test method then the topology may be modified to include operations to
ensure the conditions are met.

Warning: For future compatibility applications under test should not include intended failures that cause a
processing element to stop or restart. Thus, currently testing is against expected application behavior.

Parameters topology – Topology to be tested.

add_condition(stream, condition)
Add a condition to a stream.

Conditions are normally added through tuple_count(), contents() or tuple_check().

1.7. streamsx.topology.tester 63

https://pypi.org/project/streamsx.testing/
https://pypi.org/project/nose

streamsx Documentation, Release 1.14.7

This allows an additional conditions that are implementations of Condition.

Parameters

• stream (Stream) – Stream to be tested.

• condition (Condition) – Arbitrary condition.

Returns stream

Return type Stream

contents(stream, expected, ordered=True)
Test that a stream contains the expected tuples.

Parameters

• stream (Stream) – Stream to be tested.

• expected (list) – Sequence of expected tuples.

• ordered (bool) – True if the ordering of received tuples must match expected.

Returns stream

Return type Stream

eventual_result(stream, checker)
Test a stream reaches a known result or state.

Creates a test condition that the tuples on a stream eventually reach a known result or state. Each tuple on
stream results in a call to checker(tuple_).

The return from checker is handled as:

• None - The condition requires more tuples to become valid.

• true value - The condition has become valid.

• false value - The condition has failed. Once a condition has failed it can never become valid.

Thus checker is typically stateful and allows ensuring that condition becomes valid from a set of input
tuples. For example in a financial application the application under test may need to achieve a final known
balance, but due to timings of windows the number of tuples required to set the final balance may be
variable.

Once the condition becomes valid any false value, except None, returned by processing of subsequent
tuples will cause the condition to fail.

Returning None effectively never changes the state of the condition.

Parameters

• stream (Stream) – Stream to be tested.

• checker (callable) – Callable that returns evaluates the state of the stream with result
to the result.

New in version 1.11.

static get_streams_version(test)
Returns IBM Streams product version string for a test.

Returns the product version corresponding to the test’s setup. For STANDALONE and DISTRIBUTED the
product version corresponds to the version defined by the environment variable STREAMS_INSTALL.

Parameters test (unittest.TestCase) – Test case setup to run IBM Streams tests.

64 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

local_check(callable)
Perform local check while the application is being tested.

A call to callable is made after the application under test is submitted and becomes healthy. The check is
in the context of the Python runtime executing the unittest case, typically the callable is a method of the
test case.

The application remains running until all the conditions are met and callable returns. If callable raises an
error, typically through an assertion method from unittest then the test will fail.

Used for testing side effects of the application, typically with STREAMING_ANALYTICS_SERVICE or
DISTRIBUTED. The callable may also use the REST api for context types that support it to dynamically
monitor the running application.

The callable can use submission_result and streams_connection attributes from Tester instance to inter-
act with the job or the running Streams instance. These REST binding classes can be obtained as follows:

• Job - tester.submission_result.job

• Instance - tester.submission_result.job.get_instance()

• StreamsConnection - tester.streams_connection

Simple example of checking the job is healthy:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestLocalCheckExample(unittest.TestCase):
def setUp(self):

Tester.setup_distributed(self)

def test_job_is_healthy(self):
topology = Topology()
s = topology.source(['Hello', 'World'])

self.tester = Tester(topology)
self.tester.tuple_count(s, 2)

Add the local check
self.tester.local_check = self.local_checks

Run the test
self.tester.test(self.test_ctxtype, self.test_config)

def local_checks(self):
job = self.tester.submission_result.job
self.assertEqual('healthy', job.health)

Warning: A local check must not cancel the job (application under test).

Warning: A local check is not supported in standalone mode.

Parameters callable – Callable object.

1.7. streamsx.topology.tester 65

streamsx Documentation, Release 1.14.7

static minimum_streams_version(test, required_version)
Checks test setup matches a minimum required IBM Streams version.

Parameters

• test (unittest.TestCase) – Test case setup to run IBM Streams tests.

• required_version (str) – VRMF of the minimum version the test requires. Exam-
ples are '4.3', 4.2.4.

Returns True if the setup fulfills the minimum required version, false otherwise.

Return type bool

static require_streams_version(test, required_version)
Require a test has minimum IBM Streams version.

Skips the test if the test’s setup is not at the required minimum IBM Streams version.

Parameters

• test (unittest.TestCase) – Test case setup to run IBM Streams tests.

• required_version (str) – VRMF of the minimum version the test requires. Exam-
ples are '4.3', 4.2.4.

resets(minimum_resets=10)
Create a condition that randomly resets consistent regions. The condition becomes valid when each con-
sistent region in the application under test has been reset minimum_resets times by the tester.

The resets are performed at arbitrary intervals scaled to the period of the region (if it is periodically trig-
gered).

Note: A region is reset by initiating a request though the Job Control Plane. The reset is not driven by
any injected failure, such as a PE restart.

Parameters minimum_resets (int) – Minimum number of resets for each region.

New in version 1.11.

run_for(duration)
Run the test for a minimum number of seconds.

Creates a test wide condition that becomes valid when the application under test has been running for
duration seconds. Maybe be called multiple times, the test will run as long as the maximum value provided.

Can be used to test applications without any externally visible streams, or streams that do not have testable
conditions. For example a complete application may be tested by runnning it for for ten minutes and use
local_check() to test any external impacts, such as messages published to a message queue system.

Parameters duration (float) – Minimum number of seconds the test will run for.

static setup_distributed(test, verbose=None)
Set up a unittest.TestCase to run tests using IBM Streams distributed mode.

Two attributes are set in the test case:

• test_ctxtype - Context type the test will be run in.

• test_config - Test configuration.

Parameters

66 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

Returns: None

Cloud Pak for Data integrated instance configuration

These environment variables define how the test is built and submitted.

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the test as, defaulting to the current operat-
ing system user name.

• STREAMS_PASSWORD - Password for authentication.

Cloud Pak for Data standalone instance configuration

These environment variables define how the test is built and submitted.

• STREAMS_BUILD_URL - Endpoint for the Streams build service.

• STREAMS_REST_URL - Endpoint for the Streams SWS (REST) service.

• STREAMS_USERNAME - (optional) User name to submit the test as, defaulting to the current operat-
ing system user name.

• STREAMS_PASSWORD - Password for authentication.

Streams 4.2 & 4.3 instance configuration

Requires a local IBM Streams install define by the STREAMS_INSTALL environment variable. If
STREAMS_INSTALL is not set then the test is skipped.

The Streams instance to use is defined by the environment variables:

• STREAMS_ZKCONNECT - Zookeeper connection string (optional)

• STREAMS_DOMAIN_ID - Domain identifier

• STREAMS_INSTANCE_ID - Instance identifier

The user used to submit and monitor the job is set by the optional environment variables:

• STREAMS_USERNAME - User name defaulting to streamsadmin.

• STREAMS_PASSWORD - User password defaulting to passw0rd.

The defaults match the setup for testing on a IBM Streams Quick Start Edition (QSE) virtual machine.

Warning: streamtool is used to submit the job and requires that streamtool does not prompt
for authentication. This is achieved by using streamtool genkey.

See also:

Generating authentication keys for IBM Streams

1.7. streamsx.topology.tester 67

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html

streamsx Documentation, Release 1.14.7

static setup_standalone(test, verbose=None)
Set up a unittest.TestCase to run tests using IBM Streams standalone mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL environment variable. If
STREAMS_INSTALL is not set, then the test is skipped.

A standalone application under test will run until a condition fails or all the streams are finalized or when
the run_for() time (if set) elapses. Applications that include infinite streams must include set a run for
time using run_for() to ensure the test completes

Two attributes are set in the test case:

• test_ctxtype - Context type the test will be run in.

• test_config- Test configuration.

Parameters

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

Returns: None

static setup_streaming_analytics(test, service_name=None, force_remote_build=False,
verbose=None)

Set up a unittest.TestCase to run tests using Streaming Analytics service on IBM Cloud.

The service to use is defined by:

• VCAP_SERVICES environment variable containing streaming_analytics entries.

• service_name which defaults to the value of STREAMING_ANALYTICS_SERVICE_NAME envi-
ronment variable.

If VCAP_SERVICES is not set or a service name is not defined, then the test is skipped.

Two attributes are set in the test case:

• test_ctxtype - Context type the test will be run in.

• test_config - Test configuration.

Parameters

• test (unittest.TestCase) – Test case to be set up to run tests using Tester

• service_name (str) – Name of Streaming Analytics service to use. Must
exist as an entry in the VCAP services. Defaults to value of STREAM-
ING_ANALYTICS_SERVICE_NAME environment variable.

• force_remote_build (bool) – Force use of the Streaming Analytics build service.
If false and STREAMS_INSTALL is set then a local build will be used if the local envi-
ronment is suitable for the service, otherwise the Streams application bundle is built using
the build service.

• verbose (bool) – If true then the streamsx.topology.test logger is configured
at DEBUG level with output sent to standard error.

If run with Python 2 the test is skipped,.

Returns: None

68 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

test(ctxtype, config=None, assert_on_fail=True, username=None, password=None, al-
ways_collect_logs=False)

Test the topology.

Submits the topology for testing and verifies the test conditions are met and the job remained healthy
through its execution.

The submitted application (job) is monitored for the test conditions and will be canceled when all the con-
ditions are valid or at least one failed. In addition if a local check was specified using local_check()
then that callable must complete before the job is cancelled.

The test passes if all conditions became valid and the local check callable (if present) completed without
raising an error.

The test fails if the job is unhealthy, any condition fails or the local check callable (if present) raised an
exception. In the event that the test fails when submitting to the STREAMING_ANALYTICS_SERVICE
context, the application logs are retrieved as a tar file and are saved to the current working directory. The
filesystem path to the application logs is saved in the tester’s result object under the application_logs key,
i.e. tester.result[‘application_logs’]

Parameters

• ctxtype (str) – Context type for submission.

• config – Configuration for submission.

• assert_on_fail (bool) – True to raise an assertion if the test fails, False to return
the passed status.

• username (str) – Deprecated

• password (str) – Deprecated

• always_collect_logs (bool) – True to always collect the console log and PE trace
files of the test.

result
The result of the test. This can contain exit codes, application log paths, or other relevant test infor-
mation.

submission_result
Result of the application submission from submit().

streams_connection
Connection object that can be used to interact with the REST API of the Streaming Analytics service
or instance.

Type StreamsConnection

Returns True if test passed, False if test failed if assert_on_fail is False.

Return type bool

Deprecated since version 1.8.3: username and password parameters. When required for a dis-
tributed test use the environment variables STREAMS_USERNAME and STREAMS_PASSWORD to define
the Streams user.

tuple_check(stream, checker)
Check each tuple on a stream.

For each tuple t on stream checker(t) is called.

1.7. streamsx.topology.tester 69

streamsx Documentation, Release 1.14.7

If the return evaluates to False then the condition fails. Once the condition fails it can never become valid.
Otherwise the condition becomes or remains valid. The first tuple on the stream makes the condition valid
if the checker callable evaluates to True.

The condition can be combined with tuple_count() with exact=False to test a stream map or
filter with random input data.

An example of combining tuple_count and tuple_check to test a filter followed by a map is working cor-
rectly across a random set of values:

def rands():
r = random.Random()
while True:

yield r.random()

class TestFilterMap(unittest.testCase):
Set up omitted

def test_filter(self):
Declare the application to be tested
topology = Topology()
r = topology.source(rands())
r = r.filter(lambda x : x > 0.7)
r = r.map(lambda x : x + 0.2)

Create tester and assign conditions
tester = Tester(topology)
Ensure at least 1000 tuples pass through the filter.
tester.tuple_count(r, 1000, exact=False)
tester.tuple_check(r, lambda x : x > 0.9)

Submit the application for test
If it fails an AssertionError will be raised.
tester.test(self.test_ctxtype, self.test_config)

Parameters

• stream (Stream) – Stream to be tested.

• checker (callable) – Callable that must evaluate to True for each tuple.

tuple_count(stream, count, exact=True)
Test that a stream contains a number of tuples.

If exact is True, then condition becomes valid when count tuples are seen on stream during the test.
Subsequently if additional tuples are seen on stream then the condition fails and can never become valid.

If exact is False, then the condition becomes valid once count tuples are seen on stream and remains valid
regardless of any additional tuples.

Parameters

• stream (Stream) – Stream to be tested.

• count (int) – Number of tuples expected.

• exact (bool) – True if the stream must contain exactly count tuples, False if the stream
must contain at least count tuples.

Returns stream

70 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Return type Stream

1.8 streamsx.topology.tester_runtime

Runtime tester functionality.

1.8.1 Overview

Module containing runtime functionality for streamsx.topology.tester.

When test is executed any specified Condition instances are executed in the context of the application under test
(and not the unittest class instance). This module separates out the runtime execution code from the test definition
module tester.

1.8.2 Module contents

Classes

Condition A condition for testing.

class streamsx.topology.tester_runtime.Condition(name=None)
Bases: object

A condition for testing.

Parameters name (str) – Condition name, must be unique within the tester.

1.9 streamsx.ec

Access to the IBM Streams execution context.

1.9.1 Overview

This module (streamsx.ec) provides access to the execution context when Python code is running in a Streams appli-
cation.

A Streams application runs distributed or standalone.

Distributed

Distributed is used when an application is submitted to the Streaming Analytics service on IBM Cloud or a IBM
Streams distributed instance.

With distributed a running application is a job that contains one or more processing elements (PEs). A PE corresponds
to a Linux operating system process. The PEs in a job may be distributed across the resources (hosts) in the Streams
instance.

1.9. streamsx.ec 71

streamsx Documentation, Release 1.14.7

Standalone

Standalone is a mode where the complete application is run as a single PE (process) outside of a Streams instance.

Standalone is typically used for ad-hoc testing of an application.

1.9.2 Application log and trace

IBM Streams provides application trace and log services.

Application log

The Streams application log service is for application logging, where logging is defined as the recording of service-
ability information pertaining to application or operator events. The purpose of logging is to provide an administrator
with enough information to do problem determination for items they can potentially control. In general, very few
events are logged in the normal running scenario of an application or operator. Events pertinent to the failure or partial
failure of application runtime scenarios should be logged.

When running in distributed or standalone the com.ibm.streams.log logger has a handler that records messages to the
Streams application log service. The level of the logger and its handler are set to the configured application log level
at PE start up.

This logger and handler discard any message with level below INFO (20).

Python application code can log a message suitable for an administrator by using the com.ibm.streams.log logger or a
child logger that has logger.propagate evaulating to True. Example of logging a file exception:

try:
import numpy

except ImportError as e:
logging.getLogger('com.ibm.streams.log').error(e)
raise

Application code must not modify the com.ibm.streams.log logger, if additional handlers or different levels are required
a child logger should be used.

Application trace

The Streams application trace service is for application tracing, where tracing is defined as the recording of application
or operator internal events and data. The purpose of tracing is to allow application or operator developers to debug
their applications or operators.

When running in distributed or standalone the root logger has a handler that records messages to the Streams applica-
tion trace service. The level of the logger and its handler are set to the configured application trace level at PE start
up.

Python application code can trace a message using the root logger or a child logger that has logger.propagate
evaulating to True. Example of logging a trace message:

trace = logging.getLogger(__name__)

...

trace.info("Threshold set to %f", val)

72 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Any existing logging performed by modules will automatically become Streams trace messages if the application is
using the logging package.

Application code must not modify the root logger, if additional handlers or different levels are required a child logger
should be used.

1.9.3 Execution Context

This module (streamsx.ec) provides access to the execution context when Python code is running in a Streams appli-
cation.

Access is only supported when running:

• Streams 4.2 or later

This module may be used by Python functions or classes used in a Topology or decorated SPL operators.

Most functionality is only available when a Python class is being invoked in a Streams application.

Changed in version 1.9: Support for Python 2.7

1.9.4 Module contents

Functions

channel Return the parallel region global channel number obj is
executing in.

domain_id Return the instance identifier.
get_application_configuration Get a named application configuration.
get_application_directory Get the application directory.
instance_id Return the instance identifier.
is_active Tests is code is active within a IBM Streams exection

context.
is_standalone Is the execution context standalone.
job_id Return the job identifier.
local_channel Return the parallel region local channel number obj is

executing in.
local_max_channels Return the local maximum number of channels for the

parallel region obj is executing in.
max_channels Return the global maximum number of channels for the

parallel region obj is executing in.
pe_id Return the PE identifier.
shutdown Return the processing element (PE) shutdown event.

1.9. streamsx.ec 73

streamsx Documentation, Release 1.14.7

Classes

CustomMetric Create a custom metric.
MetricKind Enumeration for the kind of a metric.

streamsx.ec.is_active()
Tests is code is active within a IBM Streams exection context.

Returns a true value when called from within a IBM Streams distributed job or standalone execution.

Can be used to only run code required at runtime, such as importing a module that is only needed at runtime and
not topology declaration time.

Returns True if running in a IBM Streams context false otherwise.

Return type bool

New in version 1.11.

streamsx.ec.shutdown()
Return the processing element (PE) shutdown event.

The event is set when the PE is being shutdown. Can be used in source iterators that need to block by sleeping:

Sleep for 60 seconds unless the PE is being shutdown
if streamsx.ec.shutdown.wait(60.0):

return None

Code must not call set() on the returned event.

Returns Event object representing PE shutdown.

Return type threading.Event

New in version 1.11.

streamsx.ec.domain_id()
Return the instance identifier.

streamsx.ec.instance_id()
Return the instance identifier.

streamsx.ec.job_id()
Return the job identifier.

streamsx.ec.pe_id()
Return the PE identifier.

streamsx.ec.is_standalone()
Is the execution context standalone.

Returns True if the execution context is standalone, False if it is distributed.

Return type boolean

streamsx.ec.get_application_directory()
Get the application directory.

Returns The application directory.

Return type str

New in version 1.7.

74 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

streamsx.ec.get_application_configuration(name)
Get a named application configuration.

An application configuration is a named set of securely stored properties where each key and its value in the
property set is a string.

An application configuration object is used to store information that IBM Streams applications require, such as:

• Database connection data

• Credentials that your applications need to use to access external systems

• Other data, such as the port numbers or URLs of external systems

Parameters name (str) – Name of the application configuration.

Returns Dictionary containing the property names and values for the application configuration.

Return type dict

Raises ValueError – Application configuration does not exist.

streamsx.ec.channel(obj)
Return the parallel region global channel number obj is executing in.

The channel number is in the range of 0 to max_channel(obj).

When the parallel region is not nested this is the same value as local_channel(obj).

If the parallel region is nested the value will be between zero and (width*N - 1) where N is the number of
times the parallel region has been replicated due to nesting.

Parameters obj – Instance of a class executing within Streams.

Returns Parallel region global channel number or -1 if not located in a parallel region.

Return type int

streamsx.ec.local_channel(obj)
Return the parallel region local channel number obj is executing in.

The channel number is in the range of zero to local_max_channel(obj).

Parameters obj – Instance of a class executing within Streams.

Returns Parallel region local channel number or -1 if not located in a parallel region.

Return type int

streamsx.ec.max_channels(obj)
Return the global maximum number of channels for the parallel region obj is executing in.

When the parallel region is not nested this is the same value as local_max_channels(obj).

If the parallel region is nested the value will be (width*N) where N is the number of times the parallel region
has been replicated due to nesting.

Parameters obj – Instance of a class executing within Streams.

Returns Parallel region global maximum number of channels or 0 if not located in a parallel region.

Return type int

streamsx.ec.local_max_channels(obj)
Return the local maximum number of channels for the parallel region obj is executing in.

The maximum number of channels corresponds to the width of the region.

1.9. streamsx.ec 75

streamsx Documentation, Release 1.14.7

Parameters obj – Instance of a class executing within Streams.

Returns Parallel region local maximum number of channels or 0 if not located in a parallel region.

Return type int

class streamsx.ec.MetricKind
Bases: enum.Enum

Enumeration for the kind of a metric.

The kind of the metric only indicates the behavior of value, it does not impose any semantics on the value. The
kind is typically used by tooling applications.

Counter = 1
A counter metric observes a value that represents a count of an occurrence.

Gauge = 0
A gauge metric observes a value that is continuously variable with time.

Time = 2
A time metric represents a point in time or duration. The recommended unit of time is milliseconds, using
the standard epoch of 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970 to represent
a point in time.

class streamsx.ec.CustomMetric(obj, name, description=None, kind=<MetricKind.Counter: 1>,
initialValue=0)

Bases: object

Create a custom metric.

A custom metric holds a 64 bit signed integer value that represents a Counter, Gauge or Time metric.

Custom metrics are exposed through the IBM Streams monitoring APIs.

Metric name is unique within the execution context of the callable obj. Attempts to create multiple metrics
with the same name but different kinds will raise an exception. Multiple creations of a metric of the same name
and kind all refer to the same metric, the first creation is the only one that will set the initial value.

The metric’s value is assigned through the value property and can be modified through += and -=.
CustomMetric can also be converted to an int.

Parameters

• obj – Instance of a class executing within Streams.

• name (str) – Name of the custom metric.

• kind (MetricKind) – Kind of the metric.

• description (str) – Description of the metric.

• initialValue – Initial value of the metric.

Examples:

Simple example used as an instance to Stream.filter:

class MyF:
def __init__(self, substring):

self.substring = substring
pass

def __call__(self, tuple):
if self.substring in str(tuple)

(continues on next page)

76 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

(continued from previous page)

self.my_metric += 1
return True

Create the metric when the it is running
in the Streams execution context
def __enter__(self):

self.my_metric = ec.CustomMetric(self, "count_" + self.substring)

must supply __exit__ if using __enter__
def __exit__(self, exc_type, exc_val, exc_tb):

pass

def __getstate__(self):
Remove metric from saved state.
state = self.__dict__.copy()
if 'my_metric' in state:

del state['my_metric']
return state

def __setstate__(self, state):
self.__dict__.update(state)

property value
Current value of the metric.

1.10 streamsx.spl.op

Integration of SPL operators.

1.10.1 Invoking SPL Operators

IBM Streams supports Stream Processing Language (SPL), a domain specific language for streaming analytics. SPL
creates an application by building a graph of operator invocations. These operators are declared in an SPL toolkit.

SPL streams have a structured schema, such as tuple<rstring id, timestamp ts, float64 value>
for a sensor reading with a sensor identifier, timestamp and value. A schema is defined using StreamSchema.

A Python topology application can take advantage of SPL operators by using streams with structured schemas. A
stream of Python objects can be converted to a structured stream using map() with the schema parameter set:

s is stream of Python objects representing a sensor
s = ...

map s to a structured stream using a lambda function
for each sensor reading r a Python tuple is created
with the required values matching the order of the
structured schema.
s2 = s.map(lambda r : (r.sensor_id, r.reading_time, r.reading),

schema='tuple<rstring id, timestamp ts, float64 value>'

An SPL operator is invoked in an application by creating an instance of:

• Invoke - Invocation of an arbitrary SPL operator.

• Source - Invocation of an SPL source operator with one input port.

1.10. streamsx.spl.op 77

streamsx Documentation, Release 1.14.7

• Map - Invocation of an SPL map operator with one input port and one output port.

• Sink - Invocation of an SPL sink operator with one output port.

In SPL, operator invocation supports a number of clauses that are supported in Python.

Values for operator clauses

When an operator clause requires a value, the value may be passed as a constant, an input attribute (passed using the
attribute method of the invocation), or an arbitrary SPL expression (passed as a string or an Expression). Because
a string is interpreted as an SPL expression, a string constant should be passed by enclosing the quoted string in outer
quotes (for example, ‘“a string constant”’).

SPL is strictly typed so when passing a constant as a value the value may need to be strongly typed.

• bool, int, float and str values map automatically to SPL boolean, int32, float64 and rstring respectively.

• Enum values map to an operator custom literal using the symbolic name of the value. For custom literals only
the symbolic name needs to match a value expected by the operator, the class name and other values are arbitrary.

• The module streamsx.spl.types provides functions to create typed SPL expressions from values.

An optional type may be set to SPL null by passing either Python None or the value returned from null().

Param clause

Operator parameterization is through operator parameters that configure and modify the operator for the specific
application.

Parameters are passed as a dict containing the parameter names and their values (see Values for operator clauses).

Examples

To invoke a Beacon operator from the SPL standard toolkit producing 100 tuples at the rate of two per second:

schema = StreamSchema('tuple<uint64 seq>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema,

params = {'iterations':100, 'period':0.5})

To use an IntEnum to pass a custom literal to the Parse operator:

from enum import IntEnum

class DataFormats(IntEnum):
csv = 0
txt = 1

...

params['format'] = DataFormats.csv

To create a count parameter of type uint64 for the SPL DeDuplicate operator:

params['count'] = streamsx.spl.types.uint64(20)

After the instance representing the operator invocation has been created, additional parameters may be added through
the params attribute. If the value is an expression that is only valid in the context of the operator invocation then the
parameter must be added after the operator invocation has been created.

78 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

For example, the Filter operator uses an expression that is usually dependent on the context, filtering tuples based
upon their attribute values:

fs = op.Map('spl.relational::Filter', beacon)
fs.params['filter'] = fs.expression('seq % 2ul == 0ul')

Output clause

The operator output clause defines the values of attributes on outgoing tuples on the operator invocation’s output ports.

When a tuple is submitted by an operator invocation each of its attributes is set in one of three ways:

• By the operator based upon its state and input tuples. For example, a US ZIP code operator might set the zipcode
attribute based upon its lookup of the ZIP code from the address details in the input tuple.

• By the operator implicitly setting output attributes from matching input attributes when those attributes have
not been explicitly set elsewhere. Many streaming operators implicitly set output attributes to allow attributes to
flow through the operator without any explicit coding. This only occurs when an output attribute is not explicitly
set by the operator, or the output clause, and the input tuple has an attribute that matches the output attribute
(same name and type, or same name and same type as the underlying type of an output attribute with an optional
type). For example, in the US ZIP code operator, if the output tuple included attributes of rstring city,
rstring state that matched input attributes, then they would be implicitly copied from the input tuple to
the output tuple.

• By an output clause in the operator invocation. In this case the application invoking the operator is explicitly
setting attributes using SPL expressions. An operator may provide output functions that return values based
upon the operator’s state and input tuples. For example, the US ZIP code operator might provide a ZIPCode()
output function rather than explicitly setting an output attribute. Then the application is free to use any attribute
name to represent the ZIP code in its output tuple.

In Python an output tuple attribute is set by creating an attribute in the operator invocation instance that is set to a
return from the output method. The attribute value passed to the output method is passed as described in Values for
operator clauses.

For example, invoking an SPL Beacon operator using an output function to set the sequence number of a tuple and an
SPL expression to set the timestamp:

schema = StreamSchema('tuple<uint64 seq, timestamp ts>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema, params = {'period':0.1})

Set the seq attribute using an output function provided by Beacon
beacon.seq = beacon.output('IterationCount()')

Set the ts attribute using an SPL function that returns the current time
beacon.ts = beacon.output('getTimestamp()')

See also:

Streams Processing Language (SPL) Reference Reference documentation.

Developing Streams applications Developing Streams applications.

Operator invocations Operator invocations from the SPL reference documentation.

1.10. streamsx.spl.op 79

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.dev.doc/doc/dev-container.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/operatorinvocations.html

streamsx Documentation, Release 1.14.7

1.10.2 Module contents

Functions

main_composite Wrap a main composite invocation as a Topology.

Classes

Expression An SPL expression.
Invoke Declaration of an invocation of an SPL operator in a

Topology.
Map Declaration of an invocation of an SPL map operator.
Sink Declaration of an invocation of an SPL sink operator.
Source Declaration of an invocation of an SPL source operator.

class streamsx.spl.op.Invoke(topology, kind, inputs=None, schemas=None, params=None,
name=None)

Bases: streamsx._streams._placement._Placement, streamsx.topology.exop.
ExtensionOperator

Declaration of an invocation of an SPL operator in a Topology.

An SPL operator has an arbitrary of input ports and an arbitrary number of output ports. The kind of the operator
places constraints on how many input and output ports it supports, and potentially the schemas for those ports.
For example, spl.relational::Filter has a single input port and one or two output ports, in addition
the schemas of the ports must be identical.

When the operator has output ports an instance of SPLOperator has an outputs attributes which is a list of
Stream instances.

Parameters

• topology (Topology) – Topology that will invoke the operator.

• kind (str) – SPL operator kind, e.g. spl.utility::Beacon.

• inputs – Streams to connect to the operator. If not set or set to None or an empty collection
then the operator has no input ports. Otherwise a list or tuple of Stream instances where
the number of items is the number of input ports.

• schemas – Schemas of the output ports. If not set or set to None or an empty collection
then the operator has no outut ports. Otherwise a list or tuple of schemas where the number
of items is the number of output ports.

• params – Operator parameters.

• name – Name of the operator. When None defaults to a name derived from the operator
kind.

attribute(stream, name)
Expression for an input attribute.

An input attribute is an attribute on one of the input ports of the operator invocation. stream must have
been used to declare this invocation.

Parameters

• stream (Stream) – Stream the attribute is from.

80 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

• name (str) – Name of the attribute.

Returns Expression representing the input attribute.

Return type Expression

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

expression(value)
SPL expression.

An arbitrary expression that is valid in the context of this operator.

Parameters value (str) – Arbitrary SPL expression.

Returns Expression that is valid in the context of this operator.

Return type Expression

output(stream, value)
SPL output port assignment expression.

Parameters

• stream (Stream) – Output stream the assignment is for.

• value (str) – SPL expression used for an output assignment. This can be a string, a
constant, or an Expression.

Returns Output assignment expression that is valid as a the context of this operator.

Return type Expression

1.10. streamsx.spl.op 81

streamsx Documentation, Release 1.14.7

property params
Parameters for the operator invocation.

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

class streamsx.spl.op.Source(topology, kind, schema, params=None, name=None)
Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL source operator.

Source operators typically bring external data into a Streams application as a stream. A source operator has no
input ports and a single output port.

An instance of Source has an attribute stream that is Stream produced by the operator.

This is a utility class that allows simple invocation of the common case of a operator with a single output port.

Parameters

• topology (Topology) – Topology that will invoke the operator.

• kind (str) – SPL operator kind, e.g. spl.utility::Beacon.

• schema – Schema of the output port.

• params – Operator parameters.

• name – Name of the operator. When None defaults to a generated name.

attribute(stream, name)
Expression for an input attribute.

An input attribute is an attribute on one of the input ports of the operator invocation. stream must have
been used to declare this invocation.

Parameters

• stream (Stream) – Stream the attribute is from.

82 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

• name (str) – Name of the attribute.

Returns Expression representing the input attribute.

Return type Expression

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

expression(value)
SPL expression.

An arbitrary expression that is valid in the context of this operator.

Parameters value (str) – Arbitrary SPL expression.

Returns Expression that is valid in the context of this operator.

Return type Expression

output(value)
SPL output port assignment expression.

Parameters value (str) – SPL expression used for an output assignment. This can be a
string, a constant, or an Expression.

Returns Output assignment expression that is valid as a the context of this operator.

Return type Expression

property params
Parameters for the operator invocation.

1.10. streamsx.spl.op 83

streamsx Documentation, Release 1.14.7

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

property stream
Stream produced by the operator invocation.

Returns Stream produced by the operator invocation.

Return type Stream

class streamsx.spl.op.Map(kind, stream, schema=None, params=None, name=None)
Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL map operator.

Map operators have a single input port and single output port.

An instance of Map has an attribute stream that is Stream produced by the operator.

This is a utility class that allows simple invocation of the common case of a operator with a single input stream
and single output stream.

Parameters

• kind (str) – SPL operator kind, e.g. spl.relational::Filter.

• stream – Stream to connect to the operator.

• schema – Schema of the output stream. If set to None then the output schema is the same
as the schema of stream.

• params – Operator parameters.

• name – Name of the operator. When None defaults to a generated name.

attribute(name)
Expression for an input attribute.

An input attribute is an attribute on the input port of the operator invocation.

84 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

Parameters name (str) – Name of the attribute.

Returns Expression representing the input attribute.

Return type Expression

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

expression(value)
SPL expression.

An arbitrary expression that is valid in the context of this operator.

Parameters value (str) – Arbitrary SPL expression.

Returns Expression that is valid in the context of this operator.

Return type Expression

output(value)
SPL output port assignment expression.

Parameters value (str) – SPL expression used for an output assignment. This can be a
string, a constant, or an Expression.

Returns Output assignment expression that is valid as a the context of this operator.

Return type Expression

property params
Parameters for the operator invocation.

1.10. streamsx.spl.op 85

streamsx Documentation, Release 1.14.7

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

property stream
Stream produced by the operator invocation.

Returns Stream produced by the operator invocation.

Return type Stream

class streamsx.spl.op.Sink(kind, stream, params=None, name=None)
Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL sink operator.

Source operators typically send data on a stream to an external system. A sink operator has a single input port
and no output ports.

This is a utility class that allows simple invocation of the common case of a operator with a single input port.

Parameters

• kind (str) – SPL operator kind, e.g. spl.adapter::FileSink.

• input – Stream to connect to the operator.

• params – Operator parameters.

• name – Name of the operator. When None defaults to a generated name.

attribute(stream, name)
Expression for an input attribute.

An input attribute is an attribute on one of the input ports of the operator invocation. stream must have
been used to declare this invocation.

Parameters

• stream (Stream) – Stream the attribute is from.

86 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

• name (str) – Name of the attribute.

Returns Expression representing the input attribute.

Return type Expression

property category
Category for this processing logic.

An arbitrary application label allowing grouping of application elements by category.

Assign categories based on common function. For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning no assigned category.

Streams console supports visualization based upon categories.

Raises TypeError – No directly associated processing logic.

Note: A category has no affect on the execution of the application.

New in version 1.9.

colocate(others)
Colocate this processing logic with others.

Colocating processing logic requires execution in the same Streams processing element (operating system
process).

When a job is submitted Streams may colocate (fuse) processing logic into the same processing element
based upon flow analysis and current resource usage. This call instructs that this logic and others must be
executed in the same processing element.

Parameters others – Processing logic such as a Stream or Sink. A single value can be
passed or an iterable, such as a list of streams.

Returns This logic.

Return type self

expression(value)
SPL expression.

An arbitrary expression that is valid in the context of this operator.

Parameters value (str) – Arbitrary SPL expression.

Returns Expression that is valid in the context of this operator.

Return type Expression

output(stream, value)
SPL output port assignment expression.

Parameters

• stream (Stream) – Output stream the assignment is for.

• value (str) – SPL expression used for an output assignment. This can be a string, a
constant, or an Expression.

Returns Output assignment expression that is valid as a the context of this operator.

Return type Expression

1.10. streamsx.spl.op 87

streamsx Documentation, Release 1.14.7

property params
Parameters for the operator invocation.

property resource_tags
Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical character-
istics or logical uses. For example a resource (host) that has external connectivity for public data sources
may be tagged ingest.

Processing logic can be associated with one or more tags to require running on suitably tagged resources.
For example adding tags ingest and db requires that the processing element containing the callable that
created the stream runs on a host tagged with both ingest and db.

A Stream that was not created directly with a Python callable cannot have tags associated with it. For
example a stream that is a union() of multiple streams cannot be tagged. In this case this method returns
an empty frozenset which cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/
tags.html for more details of tags within IBM Streams.

Returns Set of resource tags, initially empty.

Return type set

Warning: If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

class streamsx.spl.op.Expression(_type, _value)
Bases: object

An SPL expression.

static expression(value)
Create an SPL expression.

Parameters value – Expression as a string or another Expression. If value is an instance of
Expression then a new instance is returned containing the same type and value.

Returns SPL expression from value.

Return type Expression

streamsx.spl.op.main_composite(kind, toolkits=None, name=None)
Wrap a main composite invocation as a Topology.

Provides a bridge between an SPL application (main composite) and a Topology. Create a Topology that contains
just the invocation of the main composite defined by kind.

The returned Topology may be used like any other topology instance including job configuration, tester or even
addition of SPL operator invocations or functional transformations.

Note: Since a main composite by definition has no input or output ports any functionality added to the topology
cannot interact directly with its invocation.

When name is None and no additions or tests are made to the topology then SPL compilation uses kind directly.
Otherwise the main composite invocation is invoked within a generated main composite.

88 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html
https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html

streamsx Documentation, Release 1.14.7

Parameters

• kind (str) – Kind of the main composite operator invocation.

• toolkits (list[str]) – Optional list of toolkits the main composite depends on.

• name (str) – Invocation name for the main composite.

Returns

tuple containing:

• Topology: Topology with main composite invocation.

• Invoke: Invocation of the main composite

Return type tuple

1.11 streamsx.spl.types

SPL type definitions.

1.11.1 Overview

SPL is strictly typed, thus when invoking SPL operators using classes from streamsx.spl.op then any parameters
must use the SPL type required by the operator.

1.11.2 Module contents

Functions

float32 Create an SPL float32 value.
float64 Create an SPL float64 value.
int16 Create an SPL int16 value.
int32 Create an SPL int32 value.
int64 Create an SPL int64 value.
int8 Create an SPL int8 value.
null Return an SPL null.
rstring Create an SPL rstring value.
uint16 Create an SPL uint16 value.
uint32 Create an SPL uint32 value.
uint64 Create an SPL uint64 value.
uint8 Create an SPL uint8 value.

1.11. streamsx.spl.types 89

streamsx Documentation, Release 1.14.7

Classes

Timestamp SPL native timestamp type with nanosecond resolution.

class streamsx.spl.types.Timestamp
Bases: streamsx.spl.runtime.Timestamp

SPL native timestamp type with nanosecond resolution.

Common usage is to store the seconds and nanoseconds since the Unix Epoch (Jan 1, 1970), but this is not
enforced by the Timestamp class.

Machine identifier is an optional application defined identifier for the machine the timestamp was created on. It
is the responsibility of the application to set the machine identifier if required. The machine identifier may be
used to detect if two timestamps were created on the same machine, as there may be variations in the clocks on
different machines.

A instance can be created by passing seconds, nanoseconds and optionally machine identifier:

Timestamp with the current time in seconds
discarding any fractional seconds.
ts = Timestamp(time.time(), 0)

Timestamp set to a specific time with a machine identifier
ts = Timestamp(1516500542, 9511447, 4)

A Timestamp is a namedtuple with three fields seconds, nanoseconds and machine_id.

A Timestamp acts as a datetime.datetime instance (duck typing) with the exception of:

• time() - returns an int instead of datetime.time

• datetime.datetime operations (+,-,<) are not supported

• string representation (uses Timestamp representation)

• is not an instance of datetime.datetime

The value of the equivalent datetime.datetime is identical to the instance returned by datetime().

seconds
Seconds since epoch.

Type int

nanoseconds
Nanosecond component.

Type int

machine_id
Optional machine identifier, defaults to zero.

Type int

Warning: Implementation of Timestamp changed with 1.8.3 to be a namedtuple maintaining the existing
class API.

Changed in version 1.14: Timestamp acts as a datetime.datetime.

90 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

count()
Return number of occurrences of value.

datetime()
Return the UTC datetime corresponding to the POSIX timestamp.

This is identical to datetime.datetime.utcfromtimestamp(self.time()). Nanosecond
resolution may be lost.

Returns Timestamp converted to a datetime.datetime.

Return type datetime.datetime

static from_datetime(dt, machine_id=0)
Convert a datetime to an SPL Timestamp.

Parameters

• dt (datetime.datetime) – Datetime to be converted.

• machine_id (int) – Machine identifier.

Returns Datetime converted to Timestamp.

Return type Timestamp

static from_time(t, machine_id=0)
Convert seconds since epoch to a Timestamp.

The time argument matches the return from time.time().

Parameters

• t (float) – Time to be converted.

• machine_id (int) – Machine identifier.

Returns Time converted to Timestamp.

Return type Timestamp

New in version 1.8.3.

index()
Return first index of value.

Raises ValueError if the value is not present.

property machine_id
Alias for field number 2

property nanoseconds
Alias for field number 1

static now(machine_id=0)
Timestamp representing the current time.

Parameters machine_id (int) – Machine identifier.

Returns Current time.

Return type Timestamp

New in version 1.8.3.

property seconds
Alias for field number 0

1.11. streamsx.spl.types 91

streamsx Documentation, Release 1.14.7

time()
Get the time in seconds since the epoch.

Returns time in seconds since the epoch.

Return type float

streamsx.spl.types.int8(value)
Create an SPL int8 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.int16(value)
Create an SPL int16 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.int32(value)
Create an SPL int32 value.

Returns Expression representing the value.

Return type Expression

Parameters value (int) – Value to be types as int32.

streamsx.spl.types.int64(value)
Create an SPL int64 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.uint8(value)
Create an SPL uint8 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.uint16(value)
Create an SPL uint16 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.uint32(value)
Create an SPL uint32 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.uint64(value)
Create an SPL uint64 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.float32(value)
Create an SPL float32 value.

92 Chapter 1. Python Application API for Streams

streamsx Documentation, Release 1.14.7

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.float64(value)
Create an SPL float64 value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.rstring(value)
Create an SPL rstring value.

Returns Expression representing the value.

Return type Expression

streamsx.spl.types.null()
Return an SPL null.

Returns Expression representing an SPL null value.

Return type Expression

New in version 1.10.

1.12 streamsx.spl.toolkit

SPL toolkit integration.

1.12.1 Overview

SPL operators are defined by an SPL toolkit. When a Topology contains invocations of SPL operators, their defining
toolkit must be made known using add_toolkit().

Toolkits shipped with the IBM Streams product under $STREAMS_INSTALL/toolkits are implictly known and
must not be added through add_toolkit.

1.12.2 Module contents

Functions

add_toolkit Add an SPL toolkit to a topology.
add_toolkit_dependency Add a version dependency on an SPL toolkit to a topol-

ogy.

streamsx.spl.toolkit.add_toolkit(topology, location)
Add an SPL toolkit to a topology.

Parameters

• topology (Topology) – Topology to include toolkit in.

• location (str) – Location of the toolkit directory.

streamsx.spl.toolkit.add_toolkit_dependency(topology, name, version)

1.12. streamsx.spl.toolkit 93

streamsx Documentation, Release 1.14.7

Add a version dependency on an SPL toolkit to a topology.

To specify a range of versions for the dependent toolkits, use brackets ([]) or parentheses. Use brackets to
represent an inclusive range and parentheses to represent an exclusive range. The following examples describe
how to specify a dependency on a range of toolkit versions:

• [1.0.0, 2.0.0] represents a dependency on toolkit versions 1.0.0 - 2.0.0, both inclusive.

• [1.0.0, 2.0.0) represents a dependency on toolkit versions 1.0.0 or later, but not including 2.0.0.

• (1.0.0, 2.0.0] represents a dependency on toolkits versions later than 1.0.0 and less than or equal
to 2.0.0.

• (1.0.0, 2.0.0) represents a dependency on toolkit versions 1.0.0 - 2.0.0, both exclusive.

Parameters

• topology (Topology) – Topology to include toolkit in.

• name (str) – Toolkit name.

• version (str) – Toolkit version dependency.

See also:

Toolkit information model file

New in version 1.12.

94 Chapter 1. Python Application API for Streams

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/toolkitinformationmodelfile.html

CHAPTER

TWO

SPL PRIMITIVE PYTHON OPERATORS

SPL primitive Python operators provide the ability to perform tuple processing using Python in an SPL application.

A Python function or class is simply turned into an SPL primitive operator through provided decorators.

SPL (Streams Processing Language) is a domain specific language for streaming analytics supported by Streams.

streamsx.spl.spl SPL Python primitive operators.

2.1 streamsx.spl.spl

SPL Python primitive operators.

2.1.1 Overview

SPL primitive operators that call a Python function or class methods are created by decorators provided by this module.

The name of the function or callable class becomes the name of the operator.

A decorated function is a stateless operator while a decorated class is an optionally stateful operator.

These are the supported decorators that create an SPL operator:

• @spl.source - Creates a source operator that produces tuples.

• @spl.filter - Creates a operator that filters tuples.

• @spl.map - Creates a operator that maps input tuples to output tuples.

• @spl.for_each - Creates a operator that terminates a stream processing each tuple.

• @spl.primitive_operator - Creates an SPL primitive operator that has an arbitrary number of input and
output ports.

Decorated functions and classes must be located in the directory opt/python/streams in the SPL toolkit. Each
module in that directory will be inspected for operators during extraction. Each module defines the SPL namespace
for its operators by the function spl_namespace, for example:

from streamsx.spl import spl

def spl_namespace():
return 'com.example.ops'

@spl.map()
(continues on next page)

95

streamsx Documentation, Release 1.14.7

(continued from previous page)

def Pass(*tuple_):
return tuple_

creates a pass-through operator com.example.ops::Pass.

SPL primitive operators are created by executing the extraction script spl-python-extract against the SPL toolkit. Once
created the operators become part of the toolkit and may be used like any other SPL operator.

2.1.2 Python classes as SPL operators

Overview

Decorating a Python class creates a stateful SPL operator where the instance fields of the class are the operator’s state.
An instance of the class is created when the SPL operator invocation is initialized at SPL runtime. The instance of the
Python class is private to the SPL operator and is maintained for the lifetime of the operator.

If the class has instance fields then they are the state of the operator and are private to each invocation of the operator.

If the __init__ method has parameters beyond the first self parameter then they are mapped to operator parameters.
Any parameter that has a default value becomes an optional parameter to the SPL operator. Parameters of the form
*args and **kwargs are not supported.

Warning: Parameter names must be valid SPL identifers, SPL identifiers start with an ASCII letter or underscore,
followed by ASCII letters, digits, or underscores. The name also must not be an SPL keyword.

Parameter names suppress and include are reserved.

The value of the operator parameters at SPL operator invocation are passed to the __init__ method. This is equivalent
to creating an instance of the class passing the operator parameters into the constructor.

For example, with this decorated class producing an SPL source operator:

@spl.source()
class Range(object):

def __init__(self, stop, start=0):
self.start = start
self.stop = stop

def __iter__(self):
return zip(range(self.start, self.stop))

The SPL operator Range has two parameters, stop is mandatory and start is optional, defaulting to zero. Thus the SPL
operator may be invoked as:

// Produces the sequence of values from 0 to 99
//
// Creates an instance of the Python class
// Range using Range(100)
//
stream<int32 seq> R = Range() {

param
stop: 100;

}

or both operator parameters can be set:

96 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

// Produces the sequence of values from 50 to 74
//
// Creates an instance of the Python class
// Range using Range(75, 50)
//
stream<int32 seq> R = Range() {

param
start: 50;
stop: 75;

}

Operator state

Use of a class allows the operator to be stateful by maintaining state in instance attributes across invocations (tuple
processing).

When the operator is in a consistent region or checkpointing then it is serialized using dill. The default serialization
may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This
is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See
https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the class has __enter__ and __exit__ context manager methods then __enter__ is called after the instance
has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as
open files or sockets.

Operator initialization & shutdown

Execution of an instance for an operator effectively run in a context manager so that an instance’s __enter__method
is called when the processing element containing the operator is initialized and its __exit__ method called when
the processing element is stopped. To take advantage of this the class must define both __enter__ and __exit__
methods.

Note: Initialization such as opening files should be in __enter__ in order to support stateful operator restart &
checkpointing.

Example of using __enter__ and __exit__ to open and close a file:

import streamsx.ec as ec

@spl.map()
class Sentiment(object):

def __init__(self, name):
self.name = name
self.file = None

def __enter__(self):
self.file = open(self.name, 'r')

def __exit__(self, exc_type, exc_value, traceback):
if self.file is not None:

self.file.close()

def __call__(self):
pass

2.1. streamsx.spl.spl 97

https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

streamsx Documentation, Release 1.14.7

When an instance defines a valid __exit__ method then it will be called with an exception when:

• the instance raises an exception during processing of a tuple

• a data conversion exception is raised converting a Python value to an SPL tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing
processing element will be terminated.

Application log and trace

IBM Streams provides application trace and log services which are accesible through standard Python loggers from
the logging module.

See Application log and trace.

2.1.3 Python functions as SPL operators

Decorating a Python function creates a stateless SPL operator. In SPL terms this is similar to an SPL Custom operator,
where the code in the Python function is the custom code. For operators with input ports the function is called for each
input tuple, passing a Python representation of the SPL input tuple. For an SPL source operator the function is called
to obtain an iterable whose contents will be submitted to the output stream as SPL tuples.

Operator parameters are not supported.

An example SPL sink operator that prints each input SPL tuple after its conversion to a Python tuple:

@spl.for_each()
def PrintTuple(*tuple_):

"Print each tuple to standard out."
print(tuple_, flush=True)

2.1.4 Processing SPL tuples in Python

SPL tuples are converted to Python objects and passed to a decorated callable.

Overview

For each SPL tuple arriving at an input port a Python function is called with the SPL tuple converted to Python values
suitable for the function call. How the tuple is passed is defined by the tuple passing style.

Tuple Passing Styles

An input tuple can be passed to Python function using a number of different styles:

• dictionary

• tuple

• attributes by name not yet implemented

• attributes by position

98 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

Dictionary

Passing the SPL tuple as a Python dictionary is flexible and makes the operator independent of any schema. A
disadvantage is the reduction in code readability for Python function by not having formal parameters, though getters
such as tuple['id'] mitigate that to some extent. If the function is general purpose and can derive meaning from
the keys that are the attribute names then **kwargs can be useful.

When the only function parameter is **kwargs (e.g. def myfunc(**tuple_):) then the passing style is
dictionary.

All of the attributes are passed in the dictionary using the SPL schema attribute name as the key.

Tuple

Passing the SPL tuple as a Python tuple is flexible and makes the operator independent of any schema but is brittle
to changes in the SPL schema. Another disadvantage is the reduction in code readability for Python function by not
having formal parameters. However if the function is general purpose and independent of the tuple contents *args
can be useful.

When the only function parameter is *args (e.g. def myfunc(*tuple_):) then the passing style is tuple.

All of the attributes are passed as a Python tuple with the order of values matching the order of the SPL schema.

Attributes by name

(not yet implemented)

Passing attributes by name can be robust against changes in the SPL scheme, e.g. additional attributes being added in
the middle of the schema, but does require that the SPL schema has matching attribute names.

When attributes by name is used then SPL tuple attributes are passed to the function by name for formal param-
eters. Order of the attributes and parameters need not match. This is supported for function parameters of kind
POSITIONAL_OR_KEYWORD and KEYWORD_ONLY.

If the function signature also contains a parameter of the form **kwargs (VAR_KEYWORD) then any attributes not
bound to formal parameters are passed in its dictionary using the SPL schema attribute name as the key.

If the function signature also contains an arbitrary argument list *args then any attributes not bound to formal
parameters or to **kwargs are passed in order of the SPL schema.

If there are only formal parameters any non-bound attributes are not passed into the function.

Attributes by position

Passing attributes by position allows the SPL operator to be independent of the SPL schema but is brittle to changes in
the SPL schema. For example a function expecting an identifier and a sensor reading as the first two attributes would
break if an attribute representing region was added as the first SPL attribute.

When attributes by position is used then SPL tuple attributes are passed to the function by position for formal param-
eters. The first SPL attribute in the tuple is passed as the first parameter. This is supported for function parameters of
kind POSITIONAL_OR_KEYWORD.

If the function signature also contains an arbitrary argument list *args (VAR_POSITIONAL) then any attributes not
bound to formal parameters are passed in order of the SPL schema.

The function signature must not contain a parameter of the form **kwargs (VAR_KEYWORD).

2.1. streamsx.spl.spl 99

streamsx Documentation, Release 1.14.7

If there are only formal parameters any non-bound attributes are not passed into the function.

The SPL schema must have at least the number of positional arguments the function requires.

Selecting the style

For signatures only containing a parameter of the form *args or **kwargs the style is implicitly defined:

• def f(**tuple_) - dictionary - tuple_ will contain a dictionary of all of the SPL tuple attribute’s values
with the keys being the attribute names.

• def f(*tuple_) - tuple - tuple_ will contain all of the SPL tuple attribute’s values in order of the SPL
schema definition.

Otherwise the style is set by the style parameter to the decorator, defaulting to attributes by name. The style value
can be set to:

• 'name' - attributes by name (the default)

• 'position' - attributes by position

Examples

These examples show how an SPL tuple with the schema and value:

tuple<rstring id, float64 temp, boolean increase>
{id='battery', temp=23.7, increase=true}

is passed into a variety of functions by showing the effective Python call and the resulting values of the function’s
parameters.

Dictionary consuming all attributes by **kwargs:

@spl.map()
def f(**tuple_)

pass
f({'id':'battery', 'temp':23.7, 'increase': True})
tuple_={'id':'battery', 'temp':23.7, 'increase':True}

Tuple consuming all attributes by *args:

@spl.map()
def f(*tuple_)

pass
f('battery', 23.7, True)
tuple_=('battery',23.7, True)

Attributes by name consuming all attributes:

@spl.map()
def f(id, temp, increase)

pass
f(id='battery', temp=23.7, increase=True)
id='battery'
temp=23.7
increase=True

Attributes by name consuming a subset of attributes:

100 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

@spl.map()
def f(id, temp)

pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7

Attributes by name consuming a subset of attributes in a different order:

@spl.map()
def f(increase, temp)

pass
f(temp=23.7, increase=True)
increase=True
temp=23.7

Attributes by name consuming id by name and remaining attributes by **kwargs:

@spl.map()
def f(id, **tuple_)

pass
f(id='battery', {'temp':23.7, 'increase':True})
id='battery'
tuple_={'temp':23.7, 'increase':True}

Attributes by name consuming id by name and remaining attributes by *args:

@spl.map()
def f(id, *tuple_)

pass
f(id='battery', 23.7, True)
id='battery'
tuple_=(23.7, True)

Attributes by position consuming all attributes:

@spl.map(style='position')
def f(key, value, up)

pass
f('battery', 23.7, True)
key='battery'
value=23.7
up=True

Attributes by position consuming a subset of attributes:

@spl.map(style='position')
def f(a, b)

pass
f('battery', 23.7)
a='battery'
b=23.7

Attributes by position consuming id by position and remaining attributes by *args:

@spl.map(style='position')
def f(key, *tuple_)

(continues on next page)

2.1. streamsx.spl.spl 101

streamsx Documentation, Release 1.14.7

(continued from previous page)

pass
f('battery', 23.7, True)
key='battery'
tuple_=(23.7, True)

In all cases the SPL tuple must be able to provide all parameters required by the function. If the SPL schema is
insufficient then an error will result, typically an SPL compile time error.

The SPL schema can provide a subset of the formal parameters if the remaining attributes are optional (having a
default).

Attributes by name consuming a subset of attributes with an optional parameter not matched by the schema:

@spl.map()
def f(id, temp, pressure=None)

pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7
pressure=None

2.1.5 Submission of SPL tuples from Python

The return from a decorated callable results in submission of SPL tuples on the associated outut port.

A Python function must return:

• None

• a Python tuple

• a Python dictionary

• a list containing any of the above.

None

When None is return then no tuple will be submitted to the operator output port.

Python tuple

When a Python tuple is returned it is converted to an SPL tuple and submitted to the output port.

The values of a Python tuple are assigned to an output SPL tuple by position, so the first value in the Python tuple is
assigned to the first attribute in the SPL tuple:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,b,a+b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple

(continues on next page)

102 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

(continued from previous page)

x is set to: x
y is set to: y
z is set to: x+y

The returned tuple may be sparse, any attribute value in the tuple that is None will be set to their SPL default or copied
from a matching attribute in the input tuple (same name and type, or same name and same type as the underlying type
of an output attribute with an optional type), depending on the operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,None,a+b)

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: x+y

When a returned tuple has fewer values than attributes in the SPL output schema the attributes not set by the Python
function will be set to their SPL default or copied from a matching attribute in the input tuple (same name and type,
or same name and same type as the underlying type of an output attribute with an optional type), depending on the
operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return a,

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: 0 (default int32 value)

When a returned tuple has more values than attributes in the SPL output schema then the additional values are ignored:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):

return (a,b,a+b,a/b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple
x is set to: x
y is set to: y
z is set to: x+y
#
The fourth value in the tuple a/b = x/y is ignored.

2.1. streamsx.spl.spl 103

streamsx Documentation, Release 1.14.7

Python dictionary

A Python dictionary is converted to an SPL tuple for submission to the associated output port. An SPL attribute is set
from the dictionary if the dictionary contains a key equal to the attribute name. The value is used to set the attribute,
unless the value is None.

If the value in the dictionary is None, or no matching key exists, then the attribute value is set to its SPL default
or copied from a matching attribute in the input tuple (same name and type, or same name and same type as the
underlying type of an output attribute with an optional type), depending on the operator kind.

Any keys in the dictionary that do not map to SPL attribute names are ignored.

Python list

When a list is returned, each value is converted to an SPL tuple and submitted to the output port, in order of the list
starting with the first element (position 0). If the list contains None at an index then no SPL tuple is submitted for that
index.

The list must only contain Python tuples, dictionaries or None. The list can contain a mix of valid values.

The list may be empty resulting in no tuples being submitted.

2.1.6 Module contents

Functions

extracting Is a module being loaded by
spl-python-extract.

ignore Decorator to ignore a Python function.

Classes

PrimitiveOperator Primitive operator super class.
filter Decorator that creates a filter SPL operator from a

callable class or function.
for_each Creates an SPL operator with a single input port.
input_port Declare an input port and its processor method.
map Decorator to create a map SPL operator from a callable

class or function.
primitive_operator Creates an SPL primitive operator with an arbitrary

number of input ports and output ports.
source Create a source SPL operator from an iterable.

class streamsx.spl.spl.source(docpy=True)
Bases: object

Create a source SPL operator from an iterable. The resulting SPL operator has a single output port.

When decorating a class the class must be iterable having an __iter__ function. When the SPL operator is
invoked an instance of the class is created and an iteration is created using iter(instance).

When decoratiing a function the function must have no parameters and must return an iterable or iteration.
When the SPL operator is invoked the function is called and an iteration is created using iter(value) where

104 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

value is the return of the function.

For each value in the iteration SPL zero or more tuples are submitted to the output port, derived from the value,
see Submission of SPL tuples from Python.

If the iteration completes then no more tuples are submitted and a window punctuation mark followed by final
punctuation mark are submitted to the output port.

Example definition:

@spl.source()
class Range(object):

def __init__(self, stop, start=0):
self.start = start
self.stop = stop

def __iter__(self):
return zip(range(self.start, self.stop))

Example SPL invocation:

stream<int32 seq> R = Range() {
param

stop: 100;
}

If __iter__ or __next__ block then shutdown, checkpointing or consistent region processing may be de-
layed. Having __next__ return None (no available tuples) or tuples to submit will allow such processing to
proceed.

A shutdown threading.Event is available through streamsx.ec.shutdown() which becomes set
when a shutdown of the processing element has been requested. This event my be waited on to perform a sleep
that will terminate upon shutdown.

Parameters docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __iter__ and __next__ can be suppressed when this decorator wraps a class with
context manager __enter__ and __exit__ methods.

If __exit__ returns a true value when called with an exception then the exception is suppressed.

Suppressing an exception raised by __iter__ results in the source producing an empty iteration. No tuples
will be submitted.

Suppressing an exception raised by __next__ results in the source not producing any tuples for that invocation.
Processing continues with a call to __next__.

Data conversion errors of the value returned by __next__ can also be suppressed by __exit__. If
__exit__ returns a true value when called with the exception then the exception is suppressed and the value
that caused the exception is not submitted as an SPL tuple.

class streamsx.spl.spl.map(style=None, docpy=True)
Bases: object

Decorator to create a map SPL operator from a callable class or function.

Creates an SPL operator with a single input port and a single output port. For each tuple on the input port the
callable is called passing the contents of the tuple.

The value returned from the callable results in zero or more tuples being submitted to the operator output port,
see Submission of SPL tuples from Python.

Example definition:

2.1. streamsx.spl.spl 105

streamsx Documentation, Release 1.14.7

@spl.map()
class AddSeq(object):
"""Add a sequence number as the last attribute."""
def __init__(self):

self.seq = 0

def __call__(self, *tuple_):
id = self.seq
self.seq += 1
return tuple_ + (id,)

Example SPL invocation:

stream<In, tuple<uint64 seq>> InWithSeq = AddSeq(In) { }

Parameters

• style – How the SPL tuple is passed into Python callable or function, see Processing SPL
tuples in Python.

• docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __call__ can be suppressed when this decorator wraps a class with context manager
__enter__ and __exit__ methods. If __exit__ returns a true value when called with the exception then
the exception is suppressed and the tuple that caused the exception is dropped.

Data conversion errors of the value returned by __call__ can also be suppressed by __exit__. If
__exit__ returns a true value when called with the exception then the exception is suppressed and the value
that caused the exception is not submitted as an SPL tuple.

class streamsx.spl.spl.filter(style=None, docpy=True)
Bases: object

Decorator that creates a filter SPL operator from a callable class or function.

A filter SPL operator has a single input port and one mandatory and one optional output port. The schema of
each output port must match the input port. For each tuple on the input port the callable is called passing the
contents of the tuple. if the function returns a value that evaluates to True then it is submitted to mandatory
output port 0. Otherwise it it submitted to the second optional output port (1) or discarded if the port is not
specified in the SPL invocation.

Parameters

• style – How the SPL tuple is passed into Python callable or function, see Processing SPL
tuples in Python.

• docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Example definition:

@spl.filter()
class AttribThreshold(object):

"""
Filter based upon a single attribute being
above a threshold.
"""
def __init__(self, attr, threshold):

self.attr = attr
self.threshold = threshold

(continues on next page)

106 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

(continued from previous page)

def __call__(self, **tuple_):
return tuple_[self.attr] > self.threshold:

Example SPL invocation:

stream<rstring id, float64 voltage> Sensors = ...
stream<Sensors> InterestingSensors = AttribThreshold(Sensors) {

param
attr: "voltage";
threshold: 225.0;

}

Exceptions raised by __call__ can be suppressed when this decorator wraps a class with context manager
__enter__ and __exit__ methods. If __exit__ returns a true value when called with the exception then
the expression is suppressed and the tuple that caused the exception is dropped.

class streamsx.spl.spl.for_each(style=None, docpy=True)
Bases: object

Creates an SPL operator with a single input port.

A SPL operator with a single input port and no output ports. For each tuple on the input port the decorated
callable is called passing the contents of the tuple.

Example definition:

@spl.for_each()
def PrintTuple(*tuple_):
"""Print each tuple to standard out."""

print(tuple_, flush=True)

Example SPL invocation:

() as PT = PrintTuple(SensorReadings) { }

Parameters

• style – How the SPL tuple is passed into Python callable, see Processing SPL tuples in
Python.

• docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __call__ can be suppressed when this decorator wraps a class with context manager
__enter__ and __exit__ methods. If __exit__ returns a true value when called with the exception then
the expression is suppressed and the tuple that caused the exception is ignored.

class streamsx.spl.spl.PrimitiveOperator
Bases: object

Primitive operator super class. Classes decorated with @spl.primitive_operator must extend this class if they
have one or more output ports. This class provides the submit method to submit tuples to specified otuput port.

New in version 1.8.

all_ports_ready()
Notifcation that the operator can submit tuples.

Called when the primitive operator can submit tuples using submit(). An operator must not submit
tuples until this method is called or until a port processing method is called.

2.1. streamsx.spl.spl 107

streamsx Documentation, Release 1.14.7

Any implementation must not block. A typical use is to start threads that submit tuples.

An implementation must return a value that allows the SPL runtime to determine when an operator com-
pletes. An operator completes, and finalizes its output ports when:

• All input ports (if any) have been finalized.

• All background processing is complete.

The return from all_ports_ready defines when background processing, such as threads started by
all_ports_ready, is complete. The value is one of:

• A value that evaluates to False - No background processing exists.

• A value that evaluates to True - Background processing exists and never completes. E.g. a source
operator that processes real time events.

• A callable - Background processing is complete when the callable returns. The SPL runtime invokes
the callable once (passing no arguments) when the method returns background processing is assumed
to be complete.

For example if an implementation starts a single thread then Thread.join is returned to complete the oper-
ator when the thread completes:

def all_ports_ready(self):
submitter = threading.Thread(target=self._find_and_submit_data)
submitter.start()
return submitter.join

def _find_and_submit_data(self):
...

Returns Value indicating active background processing.

This method implementation does nothing and returns None.

submit(port_id, tuple_)
Submit a tuple to the output port.

The value to be submitted (tuple_) can be a None (nothing will be submitted), tuple, dict` or
``list of those types. For details on how the tuple_ is mapped to an SPL tuple see Submission of SPL
tuples from Python.

Parameters

• port_id – Identifier of the port specified in the output_ports parameter of the
@spl.primitive_operator decorator.

• tuple_ – Tuple (or tuples) to be submitted to the output port.

class streamsx.spl.spl.input_port(style=None)
Bases: object

Declare an input port and its processor method.

Instance methods within a class decorated by spl.primitive_operator declare input ports by decorating
methods with this decorator.

Each tuple arriving on the input port will result in a call to the processor method passing the stream tuple
converted to a Python representation depending on the style. The style is determined by the method signature
or the style parameter, see Processing SPL tuples in Python.

108 Chapter 2. SPL primitive Python operators

streamsx Documentation, Release 1.14.7

The order of the methods within the class define the order of the ports, so the first port is the first method
decorated with input_port.

Parameters style – How the SPL tuple is passed into the method, see Processing SPL tuples in
Python.

New in version 1.8.

class streamsx.spl.spl.primitive_operator(output_ports=None, docpy=True)
Bases: object

Creates an SPL primitive operator with an arbitrary number of input ports and output ports.

Input ports are declared by decorating an instance method with input_port(). The method is the process
method for the input port and is called for each tuple that arrives at the port. The order of the decorated process
methods defines the order of the ports in the SPL operator, with the first process method being the first port at
index zero.

Output ports are declared by the output_ports parameter which is set to a list of port identifiers. The
port identifiers are arbitrary but must be hashable. Port identifiers allow the ability to submit tuples “logically’
rather than through a port index. Typically a port identifier will be a str or an enum. The size of the list defines
the number of output ports with the first identifier in the list coresponding to the first output port of the operator
at index zero. If the list is empty or not set then the operator has no output ports.

Tuples are submitted to an output port using submit().

When an operator has output ports it must be a sub-class of PrimitiveOperator which provides the
submit() method and the ports ready notification mechanism all_ports_ready().

Example definition of an operator with a single input port and two output ports:

@spl.primitive_operator(output_ports=['MATCH', 'NEAR_MATCH'])
class SelectCustomers(spl.PrimitiveOperator):

""" Score customers using a model.
Customers that are a good match are submitted to port 0 ('MATCH')
while customers that are a near match are submitted to port 1 ('NEAR_MATCH').

Customers that are not a good or near match are not submitted to any port.
"""
def __init__(self, match, near_match):

self.match = match
self.near_match = near_match

@spl.input_port()
def customers(self, **tuple_):

customer_score = self.score(tuple_)
if customer_score >= self.match:

self.submit('MATCH', tuple_)
elif customer_score >= self.near_match:

self.submit('NEAR_MATCH', tuple_)

def score(self, **customer):
Actual model scoring omitted
score = ...
return score

Example SPL invocation:

2.1. streamsx.spl.spl 109

streamsx Documentation, Release 1.14.7

(stream<Customers> MakeOffer; stream<Customers> ImproveOffer>) =
→˓SelectCustomers(Customers) {

param
match: 0.9;
near_match: 0.8;

}

Parameters

• output_ports (list) – List of identifiers for output ports.

• docpy – Copy Python docstrings into SPL operator model for SPLDOC.

New in version 1.8.

streamsx.spl.spl.extracting()
Is a module being loaded by spl-python-extract.

This can be used by modules defining SPL primitive operators using decorators such as @spl.map, to avoid
runtime behavior. Typically not importing modules that are not available locally. The extraction script loads the
module to determine method signatures and thus does not invoke any methods.

For example if an SPL toolkit with primitive operators requires a package extras and is using opt/python/
streams/requirements.txt to include it, then loading it at extraction time can be avoided by:

from streamsx.spl import spl

def spl_namespace():
return 'myns.extras'

if not spl.extracting():
import extras

@spl.map():
def myextras(*tuple_):

return extras.process(tuple_)

New in version 1.11.

streamsx.spl.spl.ignore(wrapped)
Decorator to ignore a Python function.

If a Python callable is decorated with @spl.ignore then function is ignored by spl-python-extract.
py.

Parameters wrapped – Function that will be ignored.

110 Chapter 2. SPL primitive Python operators

CHAPTER

THREE

STREAMS PYTHON REST API

Module that allows interaction with an running Streams instance or service through HTTPS REST APIs.

streamsx.build REST API bindings for IBM® Streams Cloud Pak for
Data build service.

streamsx.rest REST API bindings for IBM® Streams & Streaming
Analytics service.

streamsx.rest_primitives Primitive objects for REST bindings.

3.1 streamsx.build

REST API bindings for IBM® Streams Cloud Pak for Data build service.

3.1.1 Streams Build REST API

The REST Build API provides programmatic support for creating, submitting and managing Streams builds. You can
use the REST Build API from any application that can establish an HTTPS connection to the server that is running the
build service. The current support includes only methods for managing toolkits in the build service.

Cloud Pak for Data

of_endpoint() is the entry point to using the Streams Build REST API bindings, returning an BuildService.

See also:

IBM Streaming Analytics service

3.1.2 Module contents

Classes

BuildService IBM Streams build service.

class streamsx.build.BuildService(username=None, password=None, resource_url=None,
auth=None)

Bases: streamsx.rest._AbstractStreamsConnection

111

streamsx Documentation, Release 1.14.7

IBM Streams build service.

A instance of a BuildService is created using of_endpoint().

New in version 1.13.

get_resources()
Retrieves a list of all known Streams high-level Build REST resources.

Returns List of all Streams high-level Build REST resources.

Return type list of RestResource

get_toolkit(id)
Retrieves available toolkit matching a specific toolkit ID.

Parameters id (str) – Toolkit identifier to retrieve. This is the name and version of a toolkit.
For sample, com.ibm.streamsx.rabbitmq-1.1.3

Returns Toolkit matching id.

Return type Toolkit

Raises ValueError – No matching toolkit exists.

get_toolkits(name=None)
Retrieves a list of all installed Streams Toolkits.

Returns List of all Toolkit resources.

Return type list of Toolkit

Parameters name (str) – Return toolkits matching name as a regular expression.

static of_endpoint(endpoint=None, service_name=None, username=None, password=None,
verify=None)

Connect to a Cloud Pak for Data IBM Streams build service instance.

Two configurations are supported.

Integrated configuration

The build service is bound to a Streams instance and is defined using the Cloud Pak for Data deployment
endpoint (URL) and the Streams service name.

The endpoint is passed in as endpoint defaulting the the environment variable CP4D_URL. An example is
https://cp4d_server:31843.

The Streams service name is passed in as service_name defaulting to the environment variable
STREAMS_INSTANCE_ID.

Standalone configuration

A build service is independent of a Streams instance and is defined using the build service endpoint.

The endpoint is passed in as endpoint defaulting the the environment variable STREAMS_BUILD_URL.
An example is https://build_service:34679.

No service name is specified thus service_name should be passed as None or not set.

Parameters

• endpoint (str) – Endpoint defining the build service.

112 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

• service_name (str) – Streams instance name for a integrated configuration. This
value is ignored for a standalone configuration.

• username (str) – User name to authenticate as. Defaults to the environment variable
STREAMS_USERNAME or the operating system identifier if not set.

• password (str) – Password for authentication. Defaults to the environment variable
STREAMS_PASSWORD or the operating system identifier if not set.

• verify – SSL verification. Set to False to disable SSL verification. Defaults to SSL
verification being enabled.

Returns Connection to Streams build service or None of insufficient configuration was pro-
vided.

Return type BuildService

property resource_url
Endpoint URL for IBM Streams REST build API.

Type str

upload_toolkit(path)
Upload a toolkit from a directory in the local filesystem to the Streams build service.

Multiple versions of a toolkit may be uploaded as long as each has a unique version. If a toolkit is uploaded
with a name and version matching an existing toolkit, it will not replace the existing toolkit, and None
will be returned.

Parameters path (str) – The path to the toolkit directory in the local filesystem.

Returns The created Toolkit, or None if it was not uploaded.

Return type Toolkit

3.2 streamsx.rest

REST API bindings for IBM® Streams & Streaming Analytics service.

3.2.1 Streams REST API

The Streams REST API provides programmatic access to configuration and status information for IBM Streams objects
such as domains, instances, and jobs.

IBM Cloud Pak for Data (Streams 5)

Integrated configuration within project

of_service() is the entry point to using the Streams REST API bindings, returning an Instance. The config-
uration required to connect is obtained from ipcd_util.get_service_details passing in the IBM Streams
service instance name.

3.2. streamsx.rest 113

streamsx Documentation, Release 1.14.7

Integrated & standalone configurations

of_endpoint() is the entry point to using the Streams REST API bindings, returning an Instance.

IBM Streams On-premises (4.2, 4.3)

StreamsConnection is the entry point to using the Streams REST API bindings. Through its functions and the
returned objects status information can be obtained for items such as instances and jobs.

3.2.2 Streaming Analytics REST API

You can use the Streaming Analytics REST API to manage your service instance and the IBM Streams jobs that
are running on the instance. The Streaming Analytics REST API is accessible from IBM Cloud applications that are
bound to your service instance or from an application outside of IBM Cloud that is configured with the service instance
VCAP information.

StreamingAnalyticsConnection is the entry point to using the Streaming Analytics REST API. The function
get_streaming_analytics() returns a StreamingAnalyticsService instance which is the wrapper
around the Streaming Analytics REST API. This API allows functions such as start and stop the service instance.

In addition StreamingAnalyticsConnection extends from StreamsConnection and thus provides access to the
Streams REST API for the service instance.

See also:

IBM Streams REST API overview Reference documentation for the Streams REST API.

Streaming Analytics REST API Reference documentation for the Streaming Analytics service REST API.

See also:

IBM Streaming Analytics service

3.2.3 Module contents

Classes

StreamingAnalyticsConnection Creates a connection to a running Streaming Analytics
service and exposes methods to retrieve the state of the
service and its instance.

StreamsConnection Creates a connection to a running distributed IBM
Streams instance and exposes methods to retrieve the
state of that instance.

class streamsx.rest.StreamsConnection(username=None, password=None, re-
source_url=None, auth=None)

Bases: streamsx.rest._AbstractStreamsConnection

Creates a connection to a running distributed IBM Streams instance and exposes methods to retrieve the state of
that instance.

Streams maintains information regarding the state of its resources. For example, these resources could include
the currently running Jobs, Views, PEs, Operators, and Domains. The StreamsConnection provides meth-
ods to retrieve that information.

114 Chapter 3. Streams Python REST API

https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.restapi.doc/doc/restapis.html
https://console.ng.bluemix.net/apidocs/220-streaming-analytics?&language=node#introduction

streamsx Documentation, Release 1.14.7

Parameters

• username (str) – Username of an authorized Streams user. If None, the username is
taken from the STREAMS_USERNAME environment variable. If the STREAMS_USERNAME
environment variable is not set, the default streamsadmin is used.

• password (str) – Password for username If None, the password is taken from the
STREAMS_PASSWORD environment variable. If the STREAMS_PASSWORD environment
variable is not set, the default passw0rd is used to match the Streams Quick Start edition
setup.

• resource_url (str) – Root URL for IBM Streams REST API. If None, the URL is
taken from the STREAMS_REST_URL environment variable. If the REST_URL environ-
ment variable is not set, then streamtool geturl --api is used to obtain the URL.

Example

>>> resource_url = "https://streamsqse.localdomain:8443/streams/rest/resources"
>>> sc = StreamsConnection("streamsadmin", "passw0rd", resource_url)
>>> sc.session.verify=False # manually disable SSL verification, if needed
>>> instances = sc.get_instances()
>>> jobs_count = 0
>>> for instance in instances:
>>> jobs_count += len(instance.get_jobs())
>>> print("There are {} jobs across all instances.".format(jobs_count))
There are 10 jobs across all instances.

session
Requests session object for making REST calls.

Type requests.Session

get_domain(id)
Retrieves available domain matching a specific domain ID

Parameters id (str) – domain ID

Returns Domain matching id

Return type Domain

Raises ValueError – No matching domain exists.

get_domains()
Retrieves available domains.

Returns List of available domains

Return type list of Domain

get_installations()
Retrieves a list of all known Streams installations.

Returns List of all Installation resources.

Return type list of Installation

get_instance(id)
Retrieves available instance matching a specific instance ID.

Parameters id (str) – Instance identifier to retrieve.

Returns Instance matching id.

3.2. streamsx.rest 115

streamsx Documentation, Release 1.14.7

Return type Instance

Raises ValueError – No matching instance exists or multiple matching instances exist.

get_instances()
Retrieves available instances.

Returns List of available instances

Return type list of Instance

get_resources()
Retrieves a list of all known Streams high-level REST resources.

Returns List of all Streams high-level REST resources.

Return type list of RestResource

property resource_url
Root URL for IBM Streams REST API

Type str

class streamsx.rest.StreamingAnalyticsConnection(vcap_services=None, ser-
vice_name=None)

Bases: streamsx.rest.StreamsConnection

Creates a connection to a running Streaming Analytics service and exposes methods to retrieve the state of the
service and its instance.

Parameters

• vcap_services (str, optional) – VCAP services (JSON string or a file-
name whose content contains a JSON string). If not specified, it uses the value of
VCAP_SERVICES environment variable.

• service_name (str, optional) – Name of the Streaming Analytics service. If not
specified, it uses the value of STREAMING_ANALYTICS_SERVICE_NAME environ-
ment variable.

Example

>>> # Assume environment variable VCAP_SERVICES has correct information
>>> sc = StreamingAnalyticsConnection(service_name='Streaming-Analytics')
>>> print(sc.get_streaming_analytics().get_instance_status())
{'plan': 'Standard', 'state': 'STARTED', 'enabled': True, 'status': 'running'}

get_domain(id)
Retrieves available domain matching a specific domain ID

Parameters id (str) – domain ID

Returns Domain matching id

Return type Domain

Raises ValueError – No matching domain exists.

get_domains()
Retrieves available domains.

Returns List of available domains

Return type list of Domain

116 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

get_installations()
Retrieves a list of all known Streams installations.

Returns List of all Installation resources.

Return type list of Installation

get_instance(id)
Retrieves available instance matching a specific instance ID.

Parameters id (str) – Instance identifier to retrieve.

Returns Instance matching id.

Return type Instance

Raises ValueError – No matching instance exists or multiple matching instances exist.

get_instances()
Retrieves available instances.

Returns List of available instances

Return type list of Instance

get_resources()
Retrieves a list of all known Streams high-level REST resources.

Returns List of all Streams high-level REST resources.

Return type list of RestResource

get_streaming_analytics()
Returns a StreamingAnalyticsService to allow further interaction with the Streaming Analytics
service.

Returns Object for interacting with the Streaming Analytics service.

Return type StreamingAnalyticsService

static of_definition(service_def)
Create a connection to a Streaming Analytics service.

The single service is defined by service_def which can be one of

• The service credentials copied from the Service credentials page of the service console (not the
Streams console). Credentials are provided in JSON format. They contain such as the API key and
secret, as well as connection information for the service.

• A JSON object (dict) of the form: { "type": "streaming-analytics", "name":
"service name", "credentials": {...} } with the service credentials as the value
of the credentials key.

Parameters service_def (dict) – Definition of the service to connect to.

Returns Connection to defined service.

Return type StreamingAnalyticsConnection

property resource_url
Root URL for IBM Streams REST API

Type str

3.2. streamsx.rest 117

streamsx Documentation, Release 1.14.7

3.3 streamsx.rest_primitives

Primitive objects for REST bindings.

3.3.1 Overview

Contains classes representing primitive Streams objects, such as Instance, Job, PE, etc.

3.3.2 Module contents

Functions

get_view_obj

Classes

ActiveService Domain or instance service.
ActiveVersion Contains IBM Streams installation information
ApplicationBundle Application bundle tied to an instance.
ApplicationConfiguration An application configuration.
Domain IBM Streams domain.
ExportedStream Stream exported stream by a job.
Host Resource in a Streams domain or instance.
ImportedStream Stream imported by a job.
Installation IBM Streams installation.
Instance IBM Streams instance.
Job A running streams application.
JobGroup A job group definition.
Metric Streams custom or system metric.
Operator An operator invocation within a job.
OperatorConnection Connection between operators.
OperatorInputPort Operator input port.
OperatorOutputPort Operator output port.
PE Processing element (PE) within a job.
PEConnection Stream connection between two PEs.
PublishedTopic Metadata for a published topic.
Resource A resource available to a IBM Streams domain.
ResourceAllocation A resource that is allocated to an IBM Streams instance.
ResourceTag Resource tag defined in a Streams domain
RestResource HTTP REST resource identifier.
StreamingAnalyticsService Streaming Analytics service running on IBM Cloud.
Toolkit IBM Streams toolkit.
View View on a stream.
ViewItem A stream tuple in view.

class streamsx.rest_primitives.ActiveService(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

118 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Domain or instance service.

resourceType
Identifies the REST resource type, which is activeService.

Type str

leader
If True, this service is a standby service.

Type bool

processId
Process ID of this service.

Type str

startTime
Epoch time when this service started.

Type long

status
Status of this service. Some possible values include stopped, running, failed, and unknown.

Type str

type
Type of this service.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> services = instances.get_active_services()
>>> print(services[0].resourceType)
activeService

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.ActiveVersion(json_active_version)
Bases: object

Contains IBM Streams installation information

architecture
Hardware architecture on which product is installed.

Type str

build_version
Product build ID.

Type str

edition_name
Product edition.

Type str

3.3. streamsx.rest_primitives 119

streamsx Documentation, Release 1.14.7

full_product_version
Full product version, including any hot fix.

Type str

minimum_os_base_version
Minimum operating system version requirement.

Type str

minimum_os_patch_version
Minimum operating system patch requirement.

Type str

product_name
Product name.

Type str

product_version
Product version.

Type str

class streamsx.rest_primitives.ApplicationBundle(_delegator, instance, json_rep,
rest_client)

Bases: streamsx.rest_primitives._ResourceElement

Application bundle tied to an instance.

New in version 1.11.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

submit_job(job_config=None)
Submit this Streams Application Bundle (sab file) to its associated instance.

Parameters job_config (JobConfig) – a job configuration overlay

Returns Resulting job instance.

Return type Job

class streamsx.rest_primitives.ApplicationConfiguration(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

An application configuration.

Application configurations are used for secure storage and retrieval of name/value pairs.

An application configuration maintains a set of properties that an application can access at runtime. These are
typically used to maintain connection endpoint and credentials for sources and sinks.

name
Name of the configuration.

Type str

description
Description for the configuration.

Type str

properties
Property values stored for the configuration.

120 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type dict

creationTime
Epoch time when this configuraiton was created.

Type long

lastModifiedTime
Epoch time when this configuration was last modified.

Type long

delete()
Delete this application configuration.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

update(properties=None, description=None)
Update this application configuration.

To create or update a property provide its key-value pair in properties.

To delete a property provide its key with the value None in properties.

Parameters

• properties (dict) – Property values to be updated. If None the properties are un-
changed.

• description (str) – Description for the configuration. If None the description is
unchanged.

Returns self

Return type ApplicationConfiguration

class streamsx.rest_primitives.Domain(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

IBM Streams domain. A domain contains instances that support running Streams applications as jobs.

id
Unique ID for this domain.

Type str

resourceType
Identifies the REST resource type, which is domain.

Type str

creationTime
Epoch time when this domain was created.

Type long

creationuser
User ID that created this domain.

Type str

status
Status of this domain. Some possible values include running, stopping, stopped, starting, removing, and
unknown.

Type str

3.3. streamsx.rest_primitives 121

streamsx Documentation, Release 1.14.7

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> domains = sc.get_domains()
>>> print (domains[0].resourceType)
domain

get_active_services()
Get the list of ActiveService elements associated with this domain.

Returns List of ActiveService elements associated with this domain.

Return type list(ActiveService)

get_hosts()
Get the list of Host elements associated with this domain.

Returns List of Host elements associated with this domain.

Return type list(Host)

get_instances()
Get the list of Instance elements associated with this domain.

Returns List of Instance elements associated with this domain.

Return type list(Instance)

get_resource_allocations()
Get the list of ResourceAllocation elements associated with this domain.

Returns List of ResourceAllocation elements associated with this domain.

Return type list(ResourceAllocation)

get_resources()
Get the list of Resource elements associated with this domain.

Returns List of Resource elements associated with this domain.

Return type list(Resource)

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.ExportedStream(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Stream exported stream by a job.

resourceType
Identifies the REST resource type, which is exportedStream.

Type str

122 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> print (exportedstreams[0].resourceType)
exportedStream

get_operator_output_port()
Get the output port of this exported stream.

Returns Output port of this exported stream.

Return type OperatorOutputPort

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.Host(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Resource in a Streams domain or instance.

name
Configuration name for the IBM Streams resource.

Type str

resourceType
Identifies the REST resource type, which is host.

Type str

ipAddress
IP address for the IBM Streams resource.

Type str

processorCount
Number of processors on the IBM Streams resource.

Type int

restrictedTags
Set of resource tags that processing elements (PEs) must have to run on the IBM Streams resource.

Type list(str)

services
Name and status of each domain service that is designated to run on the IBM Streams resource.

Type list(dict)

status
Status of the IBM Streams resource.

Type str

tag
Names of each tag that is assigned to the IBM Streams resource.

Type list(str)

3.3. streamsx.rest_primitives 123

streamsx Documentation, Release 1.14.7

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> domains = sc.get_domains()
>>> hosts = domains[0].get_hosts()
>>> print (hosts[0].resourceType)
host

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.ImportedStream(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Stream imported by a job.

resourceType
Identifies the REST resource type, which is importedStream.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> importedstreams = instances[0].get_imported_streams()
>>> print (importedstreams[0].resourceType)
importedStream

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.Installation(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

IBM Streams installation.

resourceType
Identifies the REST resource type, which is installation.

Type str

architecture
Hardware architecture on which product is installed.

Type str

buildVersion
Product build ID.

Type str

editionName
Product edition.

Type str

fullProductVersion
Full product version, including any hot fix.

124 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type str

minimumOSBaseVersion
Minimum operating system version requirement.

Type str

minimumOSPatchVersion
Minimum operating system patch requirement.

Type str

productName
Product name.

Type str

productVersion
Product version.

Type str

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.Instance(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

IBM Streams instance.

id
Unique ID for this instance.

Type str

resourceType
Identifies the REST resource type, which is instance.

Type str

creationTime
Epoch time when this instance was created.

Type long

creationuser
User ID that created this instance.

Type str

health
Summarize status of the jobs in the instance. Some possible values include healthy, partiallyHealthy,
partiallyUnhealthy, unhealthy, and unknown.

Type str

owner
User ID that owns this instance.

Type str

startTime
Epoch time when this instance was started.

Type long

3.3. streamsx.rest_primitives 125

streamsx Documentation, Release 1.14.7

status
Status of this instance. Some possible values include running, failed, stopped, and unknown.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> print (instances[0].resourceType)
instance

create_application_configuration(name, properties, description=None)
Create an application configuration.

Parameters name (str, optional) – Only return application configurations containing
property name that matches name. name can be a

get_active_services()
Get the list of ActiveService elements associated with this instance.

Returns List of ActiveService elements associated with this instance.

Return type list(ActiveService)

get_application_configurations(name=None)
Retrieves application configurations for this instance.

Parameters name (str, optional) – Only return application configurations containing
property name that matches name. name can be a regular expression. If name is not supplied,
then all application configurations are returned.

Returns A list of application configurations matching the given name.

Return type list(ApplicationConfiguration)

get_domain()
Get the Streams domain that owns this instance.

Returns Streams domain owning this instance.

Return type Domain

get_exported_streams()
Get the list of ExportedStream elements associated with this instance.

Returns List of ExportedStream elements associated with this instance.

Return type list(ExportedStream)

get_hosts()
Get the list of Host element associated with this instance.

Returns List of Host element associated with this instance.

Return type list(Host)

get_imported_streams()
Get the list of ImportedStream elements associated with this instance.

Returns List of ImportedStream elements associated with this instance.

Return type list(ImportedStream)

126 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

get_job(id)
Retrieves a job matching the given id

Parameters id (str) – Job id to match.

Returns Job matching the given id

Return type Job

Raises ValueError – No resource matches given id or multiple resources matching given id

get_job_groups(name=None)
Retrieves job groups defined in this instance.

Parameters name (str, optional) – Only return job groups containing property name
that matches name. name can be a regular expression. If name is not supplied, then all job
groups are returned.

Returns A list of job groups matching the given name.

Return type list(JobGroup)

Only supported for Streams 5.0 and later.

New in version 1.13.13.

get_jobs(name=None)
Retrieves jobs running in this instance.

Parameters name (str, optional) – Only return jobs containing property name that
matches name. name can be a regular expression. If name is not supplied, then all jobs
are returned.

Returns A list of jobs matching the given name.

Return type list(Job)

Retrieving a list of jobs whose name contains the string “temperatureSensor” could be performed as fol-
lowed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> jobs = instance.get_jobs(name=".*temperatureApplication*")

get_operator_connections()
Get the list of OperatorConnection elements associated with this instance.

Returns List of OperatorConnection elements associated with this instance.

Return type list(OperatorConnection)

get_operators(name=None)
Get the list of Operator elements associated with this instance.

Parameters name (str) – Only return operators matching name, where name can be a regular
expression. If name is not supplied, then all operators for this instance are returned.

Returns List of Operator elements associated with this instance.

Return type list(Operator)

Retrieving a list of operators whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

3.3. streamsx.rest_primitives 127

streamsx Documentation, Release 1.14.7

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> operators = instance.get_operators(name=".*temperatureSensor*")

Changed in version 1.9: name parameter added.

get_pe_connections()
Get the list of PEConnection elements associated with this instance.

Returns List of PEConnection elements associated with this instance.

Return type list(PEConnection)

get_pes()
Get the list of PE elements associated with this instance resource.

Returns List of PE elements associated with this instance.

Return type list(PE)

get_published_topics()
Get a list of published topics for this instance.

Streams applications publish streams to a a topic that can be subscribed to by other applications. This
allows a microservice approach where publishers and subscribers are independent of each other.

A published stream has a topic and a schema. It is recommended that a topic is only associated with a
single schema.

Streams may be published and subscribed by applications regardless of the implementation language. For
example a Python application can publish a stream of JSON tuples that are subscribed to by SPL and Java
applications.

Returns List of currently published topics.

Return type list(PublishedTopic)

get_resource_allocations()
Get the list of ResourceAllocation elements associated with this instance.

Returns List of ResourceAllocation elements associated with this instance.

Return type list(ResourceAllocation)

get_views(name=None)
Get the list of View elements associated with this instance.

Parameters

• name (str, optional) – Returns view(s) matching name. name can be a regular
expression. If name

• not supplied, then all views associated with this instance
are returned. (is) –

Returns List of views matching name.

Return type list(streamsx.rest_primitives.View)

Retrieving a list of views whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

128 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> view = instance.get_views(name=".*temperatureSensor*")

static of_endpoint(endpoint=None, service_name=None, username=None, password=None,
verify=None)

Connect to a Cloud Pak for Data IBM Streams instance.

Two configurations are supported.

Integrated configuration

The Streams instance is defined using the Cloud Pak for Data deployment endpoint (URL) and the Streams
service name.

The endpoint is passed in as endpoint defaulting the the environment variable CP4D_URL. An example is
https://cp4d_server:31843.

The Streams service name is passed in as service_name defaulting to the environment variable
STREAMS_INSTANCE_ID.

Standalone configuration

The Streams instance is defined using its Streams REST api endpoint, which is its SWS service.

The endpoint is passed in as endpoint defaulting the the environment variable STREAMS_REST_URL. An
example is https://streams_sws_service:34679.

No service name is specified thus service_name should be passed as None or not set.

Parameters

• endpoint (str) – Endpoint defining the Streams instance.

• service_name (str) – Streams instance name for a integrated configuration. This
value is ignored for a standalone configuration.

• username (str) – User name to authenticate as. Defaults to the environment variable
STREAMS_USERNAME or the operating system identifier if not set.

• password (str) – Password for authentication. Defaults to the environment variable
STREAMS_PASSWORD or the operating system identifier if not set.

• verify – SSL verification. Set to False to disable SSL verification. Defaults to SSL
verification being enabled.

Returns Connection to Streams instance or None of insufficient configuration was provided.

Return type Instance

New in version 1.13.

static of_service(config)
Connect to an IBM Streams service instance running in Cloud Pak for Data.

The instance is specified in config. The configuration may be code injected from the list of services in a
Jupyter notebook running in ICPD or manually created. The code that selects a service instance by name
is:

3.3. streamsx.rest_primitives 129

streamsx Documentation, Release 1.14.7

Two lines are code injected in a Jupyter notebook by selecting the service
→˓instance
from icpd_core import ipcd_util
cfg = icpd_util.get_service_details(name='instanceName')

instance = Instance.of_service(cfg)

SSL host verification is disabled by setting SSL_VERIFY to False within config before calling this
method:

cfg[ConfigParams.SSL_VERIFY] = False
instance = Instance.of_service(cfg)

Parameters config (dict) – Configuration of IBM Streams service instance.

Returns Instance representing for IBM Streams service instance.

Return type Instance

Note: Only supported when running within the ICPD cluster, for example in a Jupyter notebook within a
ICPD project.

New in version 1.12.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

submit_job(bundle, job_config=None)
Submit a application to be run in this instance.

Parameters

• bundle (str) – path to a Streams application bundle (sab file) containing the application
to be submitted

• job_config (JobConfig) – a job configuration overlay

Returns Resulting job instance.

Return type Job

New in version 1.11.

upload_bundle(bundle)
Upload a Streams application bundle (sab) to the instance.

Uploading a bundle allows job submission from the returned ApplicationBundle.

Parameters bundle (str) – path to a Streams application bundle (sab file) containing the
application to be uploaded.

Returns Application bundle representing the uploaded bundle.

Return type ApplicationBundle

Note: When an instance does not support uploading a bundle the returned ApplicationBundle represents
the local file bundle tied to this instance. The returned object may still be used for job submission.

New in version 1.11.

130 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

class streamsx.rest_primitives.Job(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

A running streams application.

id
job ID.

Type str

name
Name of the job.

Type str

resourceType
Identifies the REST resource type, which is job.

Type str

health
Health indicator for the job. Some possible values for this property include healthy, partiallyHealthy,
partiallyUnhealthy, unhealthy, and unknown.

Type str

applicationName
Name of the streams processing application that this job is running.

Type str

jobGroup
Streams 4.2/4.3 only. Identifies the job group to which this job belongs.

Type str

startedBy
Identifies the user ID that started this job.

Type str

status
Status of this job. Some possible values for this property include canceling, running, canceled, and un-
known.

Type str

submitTime
Epoch time when this job was submitted.

Type long

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> jobs = instances[0].get_jobs()
>>> print (jobs[0].health)
healthy

cancel(force=False)
Cancel this job.

3.3. streamsx.rest_primitives 131

streamsx Documentation, Release 1.14.7

Parameters force (bool, optional) – Forcefully cancel this job.

Returns True if the job was cancelled, otherwise False if an error occurred.

Return type bool

get_domain()
Get the Streams domain that owns this job.

Returns Streams domain that owns this job.

Return type Domain

get_hosts()
Get the list of Host elements associated with this job.

Returns List of Host elements associated with this job.

Return type list(Host)

get_instance()
Get the Streams instance that owns this job.

Returns Streams instance that owns this job.

Return type Instance

get_job_group()
Get the job group associated with this job.

New in version 1.13.13.

get_operator_connections()
Get the list of OperatorConnection elements associated with this job.

Returns List of OperatorConnection elements associated with this job.

Return type list(OperatorConnection)

get_operators(name=None)
Get the list of Operator elements associated with this job.

Parameters name (str) – Only return operators matching name, where name can be a regular
expression. If name is not supplied, then all operators for this job are returned.

Returns List of Operator elements associated with this job.

Return type list(Operator)

Retrieving a list of operators whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> job = instances[0].get_jobs()[0]
>>> operators = job.get_operators(name=".*temperatureSensor*")

Changed in version 1.9: name parameter added.

get_pe_connections()
Get the list of PEConnection elements associated with this job.

Returns List of PEConnection elements associated with this job.

Return type list(PEConnection)

132 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

get_pes()
Get the list of PE elements associated with this job.

Returns List of PE elements associated with this job.

Return type list(PE)

get_resource_allocations()
Get the list of ResourceAllocation elements associated with this job.

Returns List of ResourceAllocation elements associated with this job.

Return type list(ResourceAllocation)

get_views(name=None)
Get the list of View elements associated with this job.

Parameters

• name (str, optional) – Returns view(s) matching name. name can be a regular
expression. If name

• not supplied, then all views associated with this instance
are returned. (is) –

Returns List of views matching name.

Return type list(streamsx.rest_primitives.View)

Retrieving a list of views that contain the string “temperatureSensor” could be performed as followed ..
rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> job = instances[0].get_jobs()[0]
>>> views = job.get_views(name = ".*temperatureSensor*")

refresh()
Refresh the resource and update the attributes to reflect the latest status.

retrieve_log_trace(filename=None, dir=None)
Retrieves the application log and trace files of the job and saves them as a compressed tar file.

An existing file with the same name will be overwritten.

Parameters

• filename (str) – name of the created tar file. Defaults to
job_<id>_<timestamp>.tar.gz where id is the job identifier and timestamp is the number
of seconds since the Unix epoch, for example job_355_1511995995.tar.gz.

• dir (str) – a valid directory in which to save the archive. Defaults to the current direc-
tory.

Returns the path to the created tar file, or None if retrieving a job’s logs is not supported in the
version of IBM Streams to which the job is submitted.

Return type str

New in version 1.8.

update_operators(job_config)
Adjust a job configuration while the job is running

Parameters {JobConfig} -- a job configuration overlay (job_config) –

3.3. streamsx.rest_primitives 133

streamsx Documentation, Release 1.14.7

Returns [JSON] – The result of applying the new jobConfig?

class streamsx.rest_primitives.Metric(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Streams custom or system metric.

name
Name of this metric.

Type str

resourceType
Identifies the REST resource type, which is metric.

Type str

description
Describes this metric.

Type str

lastTimeRetrieved
Epoch time when the metric was most recently retrieved.

Type str

metricKind
Kind of metric. Some possible values include counter, gauge, time and unknown.

Type str

metricType
Type of metric. Some possible values include system, custom and unknown.

Type str

value
Value for the metric.

Type int

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operators = instances[0].get_operators()
>>> metrics = operators[0].get_metrics()
>>> print (metrics[0].resourceType)
metric

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.OperatorConnection(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Connection between operators.

id
Unique ID of this operator connection within the instance.

134 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type str

resourceType
Identifies the REST resource type, which is operator.

Type str

required
Indicates whether the connection is required.

Type bool

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operatorconnections = instances[0].get_operator_connections()
>>> print (operatorconnections[0].resourceType)
operatorConnection

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.OperatorInputPort(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Operator input port.

name
Name of this input port.

Type str

resourceType
Identifies the REST resource type, which is operatorInputPort.

Type str

indexWithinOperator
Index of the input port within the operator.

Type int

New in version 1.9.

get_connections()
Get the list of OperatorConnection elements associated with this port.

Returns List of OperatorConnection elements associated with this port.

Return type list(OperatorConnection)

New in version 1.13.

get_metrics(name=None)
Get metrics for this input port.

Parameters name (str, optional) – Only return metrics matching name, where name can
be a regular expression. If name is not supplied, then all metrics for this input port are
returned.

Returns List of matching metrics.

3.3. streamsx.rest_primitives 135

streamsx Documentation, Release 1.14.7

Return type list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operator = instances[0].get_operators()[0]
>>> input_port = operator.get_input_ports()[0]
>>> metrics = input_port.get_metrics(name='*temperatureSensor*')

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.OperatorOutputPort(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Operator output port.

name
Name of this output port.

Type str

resourceType
Identifies the REST resource type, which is operatorOutputPort.

Type str

indexWithinOperator
Index of the output port within the operator.

Type int

streamName
Name of the stream that is associated with this output port.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> operatoroutputport = exportedstreams[0].get_operator_output_port()
>>> print (operatoroutputport.resourceType)
operatorOutputPort

get_connections()
Get the list of OperatorConnection elements associated with this port.

Returns List of OperatorConnection elements associated with this port.

Return type list(OperatorConnection)

New in version 1.13.

get_metrics(name=None)
Get metrics for this output port.

136 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Parameters name (str, optional) – Only return metrics matching name, where name can
be a regular expression. If name is not supplied, then all metrics for this output port are
returned.

Returns List of matching metrics.

Return type list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> operatoroutputport = exportedstreams[0].get_operator_output_port()
>>> operatoroutputport.get_metrics(name='*temperatureSensor*')

New in version 1.9.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.Operator(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

An operator invocation within a job.

name
Operator name.

Type str

resourceType
Identifies the REST resource type, which is operator.

Type str

operatorKind
SPL primitive operator type for this operator.

Type str

indexWithinJob
Index of this operator within the job.

Type int

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operators = instances[0].get_operators()
>>> print (operators[0].resourceType)
operator

get_host()

Get resource this operator is currently executing in. If the operator is running on an externally man-
aged resource None is returned.

3.3. streamsx.rest_primitives 137

streamsx Documentation, Release 1.14.7

Returns Resource this operator is running on.

Return type Host

New in version 1.9.

get_input_ports()
Get list of input ports for this operator.

Returns Input ports for this operator.

Return type list(OperatorInputPort)

New in version 1.9.

get_job()
Get the Streams job that owns this operator.

Returns Streams Job owning this operator.

Return type Job

get_metrics(name=None)
Get metrics for this operator.

Parameters name (str, optional) – Only return metrics matching name, where name can
be a regular expression. If name is not supplied, then all metrics for this operator are returned.

Returns List of matching metrics.

Return type list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operator = instances[0].get_operators()[0]
>>> metrics = op.get_metrics(name='*temperatureSensor*')

get_output_ports()
Get list of output ports for this operator.

Returns Output ports for this operator.

Return type list(OperatorOutputPort)

New in version 1.9.

get_pe()
Get the Streams processing element this operator is executing in.

Returns Processing element for this operator.

Return type PE

New in version 1.9.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.PEConnection(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Stream connection between two PEs.

138 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

id
PE connection ID.

Type str

resourceType
Identifies the REST resource type, which is peConnection.

Type str

required
Indicates whether this connection is required.

Type bool

status
Status of this connection. Some possible values include connected, disconnected, and unknown.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> peconnections = instances.get_pe_connections()
>>> print(peconnections[0].resourceType)
peConnection

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.PE(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

Processing element (PE) within a job. A processing element hosts one or more operators within a single job.

id
PE ID.

Type str

resourceType
Identifies the REST resource type, which is pe.

Type str

health
Health indicator for this PE. Some possible values include healthy, partiallyHealthy, partiallyUnhealthy,
unhealthy, and unknown.

Type str

indexWithinJob
Index of the PE within the job.

Type int

launchCount
Number of times this PE was started manually or automatically because of failures.

Type int

3.3. streamsx.rest_primitives 139

streamsx Documentation, Release 1.14.7

optionalConnections
Status of optional connections for this PE. Some possible values include connected, disconnected, partial-
lyConnected, and unknown.

Type str

pendingTracingLevel
Describes a pending change to the granularity of the trace information that is stored for this PE. Some
possible values include off, error, debug and trace. The value is None, if no change is pending.

Type str

processId
Operating system process ID for this PE.

Type str

relocatable
Indicates whether this PE can be relocated to a different resource.

Type bool

requiredConnections
Status of the required connections for this PE. Some possible values include connected, disconnected,
partiallyConnected, and unknown.

Type str

restartable
Indicates whether this PE can be restarted.

Type bool

status
Status of this PE.

Type str

statusReason
Additional information for the status of this PE.

Type str

tracingLevel
Granularity of the trace information. Some possible values include off, error, debug and trace.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> pes = instances.get_pes()
>>> print(pes[0].resourceType)
pe

get_host()

Get resource this processing element is currently executing in. If the processing element is running on
an externally managed resource None is returned.

140 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Returns Resource this processing element is running on.

Return type Host

New in version 1.9.

get_job()
Get the Streams job that owns this PE.

Returns Streams Job owning this PE.

Return type Job

get_metrics(name=None)
Get metrics for this PE.

Parameters name (str, optional) – Only return metrics matching name, where name can
be a regular expression. If name is not supplied, then all metrics for this PE are returned.

Returns List of matching metrics.

Return type list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as
followed .. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> pe = instances.get_pes()[0]
>>> metrics = pe.get_metrics(name='*temperatureSensor*')

New in version 1.9.

get_resource()
Get resource this processing element is currently executing in.

Returns Resource this processing element is running on.

Return type Host

New in version 1.13.13.

get_resource_allocation()
Get the ResourceAllocation element tance.

Returns Resource allocation used to access information about the resource where this PE is
running.

Return type ResourceAllocation

New in version 1.9.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

retrieve_console_log(filename=None, dir=None)
Retrieves the application console log (standard out and error) files for this PE and saves them as a plain
text file.

An existing file with the same name will be overwritten.

Parameters

3.3. streamsx.rest_primitives 141

streamsx Documentation, Release 1.14.7

• filename (str) – name of the created file. Defaults to
pe_<id>_<timestamp>.stdouterr where id is the PE identifier and timestamp is the
number of seconds since the Unix epoch, for example pe_83_1511995995.trace.

• dir (str) – a valid directory in which to save the file. Defaults to the current directory.

Returns the path to the created file, or None if retrieving a job’s logs is not supported in the
version of streams to which the job is submitted.

Return type str

New in version 1.9.

retrieve_trace(filename=None, dir=None)
Retrieves the application trace files for this PE and saves them as a plain text file.

An existing file with the same name will be overwritten.

Parameters

• filename (str) – name of the created file. Defaults to pe_<id>_<timestamp>.trace
where id is the PE identifier and timestamp is the number of seconds since the Unix epoch,
for example pe_83_1511995995.trace.

• dir (str) – a valid directory in which to save the file. Defaults to the current directory.

Returns the path to the created file, or None if retrieving a job’s logs is not supported in the
version of streams to which the job is submitted.

Return type str

New in version 1.9.

class streamsx.rest_primitives.PublishedTopic(topic, schema)
Bases: object

Metadata for a published topic.

topic
Published topic

Type str

schema
Schema of topic

Type str

class streamsx.rest_primitives.ResourceAllocation(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

A resource that is allocated to an IBM Streams instance.

resourceType
Identifies the REST resource type, which is resourceAllocation.

Type str

applicationResource
Indicates whether this resource is an application resource, which is used to run streams processing appli-
cations.

Type bool

schedulerStatus
Indicates whether this resource is schedulable for the instance.

142 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type str

status
Status of this resource for the instance.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> allocations = instances.get_resource_allocations()
>>> print(allocations[0].resourceType)
resourceAllocation

get_jobs(name=None)
Retrieves jobs running on this resource in its instance.

Parameters name (str, optional) – Only return jobs containing property name that
matches name. name can be a regular expression. If name is not supplied, then all jobs
are returned.

Returns A list of jobs matching the given name.

Return type list(Job)

Note: If applicationResource is False an empty list is returned.

New in version 1.9.

get_pes()
Get the list of PE running on this resource in its instance.

Returns List of PE running on this resource.

Return type list(PE)

Note: If applicationResource is False an empty list is returned.

New in version 1.9.

get_resource()
Get the Resource of the resource allocation.

Returns Resource for this allocation.

Return type Resource

New in version 1.9.

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.Resource(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

A resource available to a IBM Streams domain.

3.3. streamsx.rest_primitives 143

streamsx Documentation, Release 1.14.7

id
Resource identifier.

Type str

displayName
Resource display name.

Type str

ipAddress
IP address.

Type str

status
Resource status.

Type str

tags
Tags assigned to resource.

Type list[str]

New in version 1.9.

get_metrics(name=None)
Get metrics for this resource.

Parameters name (str, optional) – Only return metrics matching name, where name can
be a regular expression. If name is not supplied, then all metrics for this resource are returned.

Returns List of matching metrics.

Return type list(Metric)

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.ResourceTag(json_resource_tag)
Bases: object

Resource tag defined in a Streams domain

definition_format_properties
Indicates whether the resource definition consists of one or more properties.

Type bool

description
Tag description.

Type str

name
Tag name.

Type str

properties_definition
Contains the properties of the resource definition. Only present if definition_format_properties is True.

Type list(str)

reserved
If True, this tag is defined by IBM Streams, and cannot be modified.

144 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type bool

class streamsx.rest_primitives.RestResource(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

HTTP REST resource identifier.

name
Resource name.

Type str

resource
A string that identifies the URI for the resource.

Type str

Changed in version 1.9: Changed to RestResource from Resource.

get_resource()
Make a request against this REST resource. :returns: JSON response. :rtype: dict

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.StreamingAnalyticsService(rest_client, credentials)
Bases: object

Streaming Analytics service running on IBM Cloud.

cancel_job(job_id=None, job_name=None)
Cancel a running job.

Parameters

• job_id (str, optional) – Identifier of job to be canceled.

• job_name (str, optional) – Name of job to be canceled.

Returns JSON response for the job cancel operation.

Return type dict

get_instance_status()
Get the status the instance for this Streaming Analytics service.

Returns JSON response for the instance status operation.

Return type dict

start_instance()
Start the instance for this Streaming Analytics service.

Returns JSON response for the instance start operation.

Return type dict

stop_instance()
Stop the instance for this Streaming Analytics service.

Returns JSON response for the instance start operation.

Return type dict

submit_job(bundle, job_config=None)
Submit a Streams Application Bundle (sab file) to this Streaming Analytics service.

Parameters

3.3. streamsx.rest_primitives 145

streamsx Documentation, Release 1.14.7

• bundle (str) – path to a Streams application bundle (sab file) containing the application
to be submitted

• job_config (JobConfig) – a job configuration overlay

Returns

JSON response from service containing ‘name’ field with unique job name assigned to
submitted job, or, ‘error_status’ and ‘description’ fields if submission was unsuccessful.

Return type dict

class streamsx.rest_primitives.Toolkit(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

IBM Streams toolkit.

id
Unique ID for this instance.

Type str

resourceType
Identifies the REST resource type, which is toolkit.

Type str

name
The name of the toolkit.

Type str

version
The version of the toolkit.

Type str

requiredProductVersion
The earliest version of Streams required by the toolkit.

Type str

path
The full path to the toolkit.

Type str

Example

>>> from streamsx.build import BuildService
>>> build_service = BuildService.of_endpoint()
>>> toolkits = build_service.get_toolkits()
>>> print (toolkits[0].resourceType)
toolkit

New in version 1.13.

class Dependency(name, version)
Bases: object

The name, and range of versions, of a toolkit required by another toolkit.

name
the name of the required toolkit

146 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

Type str

version
the range of versions required of the toolkit

Type str

property dependencies
Find all the dependencies for this toolkit.

Returns List of dependencies of this toolkit. If this toolkit does not have any dependencies, this
will be an empty list.

Return type list(Dependency)

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.ViewItem(json_rep, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

A stream tuple in view.

collectionTime
Epoch time when this viewItem is collected from the stream.

Type long

data
Content of this viewItem.

Type dict

resourceType
Identifies the REST resource type, which is viewItem.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> views = instances[0].get_views()
>>> viewitems = views[0].get_view_items()
>>> print (viewitems[0].resourceType)
viewItem

refresh()
Refresh the resource and update the attributes to reflect the latest status.

class streamsx.rest_primitives.View(json_view, rest_client)
Bases: streamsx.rest_primitives._ResourceElement

View on a stream.

id
An unique identifier for the view.

Type str

name
View name.

3.3. streamsx.rest_primitives 147

streamsx Documentation, Release 1.14.7

Type str

description
Description of the view.

Type str

resourceType
Identifies the REST resource type, which is view.

Type str

activateOption
Indicate when the view starts buffering data.

Type str

maximumTupleRate
Maximum Number of tuples at which the view collects per second.

Type int

logicalOperatorName
The logical name of the operator that contains the output port on which the view is created.

Type str

bufferCapacitySeconds
Buffer size measured in seconds.

Type int

bufferCapacityTuples
Buffer size measured in number of tuples.

Type int

bufferCapacityUnits
Indicates whether the buffer capacity for the view is determined by seconds, tuples or unknown.

Type str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> views = instances[0].get_views()
>>> print (views[0].resourceType)
view

display(duration=None, period=2)
Display a view within a Jupyter or IPython notebook.

Provides an easy mechanism to visualize data on a stream using a view.

Tuples are fetched from the view and displayed in a table within the notebook cell using a pandas.
DataFrame. The table is continually updated with the latest tuples from the view.

This method calls start_data_fetch() and will call stop_data_fetch() when completed if
duration is set.

Parameters

148 Chapter 3. Streams Python REST API

streamsx Documentation, Release 1.14.7

• duration (float) – Number of seconds to fetch and display tuples. If None then the
display will be updated until stop_data_fetch() is called.

• period (float) – Maximum update period.

Note: A view is a sampling of data on a stream so tuples that are on the stream may not appear in the
view.

Note: Python modules ipywidgets and pandas must be installed in the notebook environment.

Warning: Behavior when called outside a notebook is undefined.

New in version 1.12.

fetch_tuples(max_tuples=20, timeout=None)
Fetch a number of tuples from this view.

Fetching of data must have been started with start_data_fetch() before calling this method.

If timeout is None then the returned list will contain max_tuples tuples. Otherwise if the timeout is
reached the list may contain less than max_tuples tuples.

Parameters

• max_tuples (int) – Maximum number of tuples to fetch.

• timeout (float) – Maximum time to wait for max_tuples tuples.

Returns List of fetched tuples.

Return type list

New in version 1.12.

get_domain()
Get the Streams domain for the instance that owns this view.

Returns Streams domain for the instance owning this view.

Return type Domain

get_instance()
Get the Streams instance that owns this view.

Returns Streams instance owning this view.

Return type Instance

get_job()
Get the Streams job that owns this view.

Returns Streams Job owning this view.

Return type Job

get_view_items()
Get a list of ViewItem elements associated with this view.

Returns List of ViewItem(s) associated with this view.

Return type list(ViewItem)

3.3. streamsx.rest_primitives 149

streamsx Documentation, Release 1.14.7

refresh()
Refresh the resource and update the attributes to reflect the latest status.

start_data_fetch()
Starts a thread that fetches data from the Streams view server.

Each item in the returned Queue represents a single tuple on the stream the view is attached to.

Returns Queue containing view data.

Return type queue.Queue

Note: This is a queue of the tuples coverted to Python objects, it is not a queue of ViewItem objects.

stop_data_fetch()
Stops the thread that fetches data from the Streams view server.

150 Chapter 3. Streams Python REST API

CHAPTER

FOUR

SCRIPTS

The streamsx package provides a number of command line scripts.

4.1 spl-python-extract

4.1.1 Overview

Extracts SPL Python primitive operators from decorated Python classes and functions.

Executing this script against an SPL toolkit creates the SPL primitive operator meta-data required by the SPL compiler
(sc).

4.1.2 Usage

spl-python-extract [-h] -i DIRECTORY [--make-toolkit] [-v]

Extract SPL operators from decorated Python classes and functions.

optional arguments:
-h, --help show this help message and exit
-i DIRECTORY, --directory DIRECTORY

Toolkit directory
--make-toolkit Index toolkit using spl-make-toolkit
-v, --verbose Print more diagnostics

4.1.3 SPL Python primitive operators

SPL operators that call a Python function or callable class are created by decorators provided by the streamsx package.

To create SPL operators from Python functions or classes one or more Python modules are created in the opt/
python/streams directory of an SPL toolkit.

spl-python-extract is a Python script that creates SPL operators from Python functions and classes contained
in modules under opt/python/streams.

The resulting operators embed the Python runtime to allow stream processing using Python.

Details on how to implement SPL Python primitive operators see streamsx.spl.spl.

151

streamsx Documentation, Release 1.14.7

4.2 streamsx-info

4.2.1 Overview

Information about streamsx package and environment.

Prints to standard out information about the streamsx package and environment variables used to support Python in
IBM Streams and Streaming Analytics service.

A Python warning is issued if a mismatch is detected between the installed streamsx package and its modules. This is
typically due to having a different version of the modules accessible through the environment variable PYTHONPATH.

Warning: When using the streamsx package ensure that the environment variable PYTHONPATH does not in-
clude a path ending with com.ibm.streamsx.topology/opt/python/packages. The IBM Streams
environment configuration script streamsprofile.sh modifies or sets PYTHONPATH to include the Python
support from the SPL topology toolkit shipped with the product. This was to support Python before the streamsx
package was available. The recommendation is to unset PYTHONPATH or modify it not to include the path to the
topology toolkit.

Output is subject to change in the order and information displayed. Intended as an ad-hoc tool to help diagnose issues
with streamsx.

Script may also be run as Python module:

python -m streamsx.scripts.info

4.2.2 Usage

usage: streamsx-info [-h]

Prints support information about streamsx package and environment.

optional arguments:
-h, --help show this help message and exit

4.3 streamsx-runner

4.3.1 Overview

Submits or builds a Streams application to the Streaming Analytics service.

The application to be submitted can be:

• A Python application defined through Topology using the --topology flag.

• An SPL application (main composite) using the --main-composite flag.

• A Streams application bundle (sab file) using the --bundle flag.

152 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

4.3.2 Streaming Analytics service

The Streaming Analytics service is defined by:

• Service name - --service-name defaulting to environment variable
STREAMING_ANALYTICS_SERVICE_NAME. The service name must exist in the vcap services.

• Vcap services - Environment variable VCAP_SERVICES containing JSON representation of the service defini-
tions or a file name containing the service definitions.

4.3.3 Job submission

Job submission occurs unless --create-bundle is set.

4.3.4 Bundle creation

When -create-bundle is specified with -main-composite or --topology then a Streams application bun-
dle (sab file) is created.

If environment variable STREAMS_INSTALL is set the the build is local otherwise the build occurs in the IBM Cloud
using the Streaming Analytics service.

When STREAMS_INSTALL is not set then streamsx-runner can be executed with no local Streams install.

When compiling an SPL application (--main-composite) then the path to the application toolkit containing the
main composite must be listed with --toolkits.

Any other required local toolkits must be listed with with --toolkits.

4.3.5 Usage

streamsx-runner [-h] [--service-name SERVICE_NAME] | [--create-bundle]
(--topology TOPOLOGY | --main-composite MAIN_COMPOSITE | --bundle BUNDLE)
[--toolkits TOOLKITS [TOOLKITS ...]] [--job-name JOB_NAME]
[--preload] [--trace {error,warn,info,debug,trace}]
[--submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...

→˓]]
[--job-config-overlays file]

Execute a Streams application using a Streaming Analytics service.

optional arguments:
-h, --help show this help message and exit
--service-name SERVICE_NAME

Submit to Streaming Analytics service
--create-bundle Create a bundle (sab file). No job submission occurs.
--topology TOPOLOGY Topology to call
--main-composite MAIN_COMPOSITE

SPL main composite (namespace::composite_name)
--bundle BUNDLE Streams application bundle (sab file) to submit to

service

Build options:
Application build options

(continues on next page)

4.3. streamsx-runner 153

streamsx Documentation, Release 1.14.7

(continued from previous page)

--toolkits TOOLKITS [TOOLKITS ...]
SPL toolkit path containing the main composite and any
other required SPL toolkit paths.

Job options:
Job configuration options

--job-name JOB_NAME Job name
--preload Preload job onto all resources in the instance
--trace {error,warn,info,debug,trace}

Application trace level
--submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...], -p

→˓SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...]
Submission parameters as name=value pairs

--job-config-overlays file
Path to file containing job configuration overlays
JSON. Overrides any job configuration set by the
application.

4.3.6 Submitting to Streaming Analytics service

An application is submitted to a Streaming Analytics service using --service-name SERVICE_NAME. The
named service must exist in the VCAP services definition pointed to by the VCAP_SERVICES environment vari-
able.

The application is submitted as source (except --bundle) and compiled into a Streams application bundle (sab file)
using the build service before being submitted as a running job to the service instance.

See also:

Accessing a service

Python applications

To submit a Python application a Python function must be defined that returns the application (and optionally its
configuration) to be submitted. The fully qualified name of this function is specified using the --topology flag.

For example, an application can be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
--topology com.example.apps.sensor_ingester

The function returns one of:

• a Topology instance defining the application

• a tuple containing two values, in order:

– a Topology instance defining the application

– job configuration, one of:

* JobConfig instance

* dict corresponding to the configuration object passed into submit()

For example the above function might be defined as:

154 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

def _create_sensor_ingester_app():
topo = Topology('SensorIngesterApp')

Application declaration omitted
...

return topo

def sensor_ingester():
return (_create_sensor_ingester_app(), JobConfig(job_name='SensorIngester'))

Thus when this application is submitted using the sensor_ingester function it is always submitted with the same job
name SensorIngester.

The function must be accessible from the current Python path (typically through environment variable PYTHONPATH).

SPL applications

The main composite that defines the application is specified using the -main-composite flag specifing the fully
namespace qualified name.

Any required local SPL toolkits, including the one containing the main composite, must be indivdually specified by
location to the --toolkits flag. Any SPL toolkit that is present on the IBM Cloud service need not be included.

For example, an application that uses the Slack toolkit might be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

where $HOME/app/alerters is the location of the SPL application toolkit containing the com.example.
alert::SlackAlerter main composite.

Warning: The main composite name must be namespace qualified. Use of the default namespace for a main
composite is not recommended as it increases the chance of a name clash with another SPL toolkit.

Streams application bundles

A Streams application bundle is submitted to a service instance using --bundle. The argument to --bundle is a
locally accessible file that will be uploaded to the service.

The bundle must have been created on using an IBM Streams install whose architecture and OS version matches the
service instance. Currently this is x86_64 and RedHat/CentOS 6 or 7 depending on the service instance.

The --toolkits flag must not be specified when submitting a bundle.

4.3. streamsx-runner 155

streamsx Documentation, Release 1.14.7

Job options

Job options, such as --job-name, configure the running job.

For --topology job options set as arguments to streamsx-runner override any configuration returned from
the function defining the application.

4.3.7 Creating Streams application bundles

--create-bundle uses a local IBM Streams install to attempt to mimic the build that would occur with
-topology or --main-composite. Differences between the local environment and the IBM Cloud Stream-
ing Analytics build environment may cause build failures in one and not the other.

This can be used as a mechanism to perform a local test build before using the service, or as a valid mechanism to
create bundles for later upload with --bundle.

For example simply changing the --service-name name to --create-bundle perfoms a local build of the
same application:

Submit to an Streaming Analytics service
streamsx-runner --service-name Streaming-Analytics-xd \

--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

Build the same application locally
streamsx-runner --create-bundle \

--main-composite com.example.alert::SlackAlerter \
--toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

4.4 streamsx-sc

4.4.1 Overview

SPL compiler for IBM Streams running on IBM Cloud Pak for Data.

streamsx-sc replicates a sub-set of Streams 4.3 sc options.

streamsx-sc is supported for Streams 5.x (Cloud Pak for Data). A local install of Streams is not required, simply
the installation of the streamsx package. All functionality is implemented through the Cloud Pak for Data and Streams
build service REST apis.

Cloud Pak for Data configuration

Integrated configuration

The Streams instance (and its build service) and authentication are defined through environment variables:

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

156 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

Standalone configuration

The Streams build service and authentication are defined through environment variables:

• STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as node port:
https://<NODE-IP>:<NODE-PORT>

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

4.4.2 Usage

streamsx-sc [-h] --main-composite name [--spl-path SPL_PATH]
[--optimized-code-generation] [--no-optimized-code-generation]
[--prefer-facade-tuples] [--ld-flags LD_FLAGS]
[--cxx-flags CXX_FLAGS] [--c++std C++STD]
[--data-directory DATA_DIRECTORY]
[--output-directory OUTPUT_DIRECTORY] [--disable-ssl-verify]
[--static-link] [--standalone-application]
[--set-relax-fusion-relocatability-restartability]
[--checkpoint-directory path] [--profiling-sampling rate]
[compile-time-args [compile-time-args ...]]

Options and arguments

compile-time-args: Pass named arguments each in the format name=value to the compiler. The name
cannot contain the character = but otherwise is a free form string. It matches the name parameter
that is specified in calls that are made to the compile-time argument access functions from within
SPL code. The value can be any string. See Compile-time arguments .

-M,–main-composite: SPL Main composite

-t,–spl-path: Set the toolkit lookup paths. Separate multiple paths with :. Each path is a toolkit directory
or a directory of toolkit directories. This path overrides the STREAMS_SPLPATH environment
variable.

-a,–optimized-code-generation: Generate optimized code with less runtime error checking

—no-optimized-code-generation: Generate non-optimized code with more runtime error checking. Do
not use with the –optimized-code- generation option.

-k,–prefer-facade-tuples: Generate the facade tuples when it is possible.

-w,–ld-flags: Pass the specified flags to ld while linking occurs.

-x,–cxx-flags: Pass the specified flags to the C++ compiler during the build.

–c++std: Specify the language level for the underlying C++ compiles.

–data-directory: Specifies the location of the data directory to use.

–output-directory: Specifies a directory where the application artifacts are placed.

–disable-ssl-verify: Disable SSL verification against the build service

Deprecated arguments Arguments supported by sc but deprecated. They have no affect on compilation.

-s,–static-link

-T,–standalone-application

4.4. streamsx-sc 157

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/compileargs.html

streamsx Documentation, Release 1.14.7

-O,–set-relax-fusion-relocatability-restartability

-K,–checkpoint-directory

-S,–profiling-sampling

4.4.3 Toolkits

The application toolkit is defined as the working directory of streamsx-sc.

Local toolkits are found through the toolkit path set by –spl-path or environment variable STREAMS_SPLPATH. Local
toolkits are included in the build code archive sent to the build service if:

• the toolkit is defined as a dependent of the application toolkit including recursive dependencies of required local
toolkits.

• and a toolkit of a higher version within the required dependency range does not exist locally or remotely on the
build service.

The toolkit path for the compilation on the build service includes:

• the application toolkit

• local tookits included in the build code archive

• all toolkits uploaded on the Streams build service

• all product toolkits on the Streams build service

The application toolkit and local toolkits included in the build archive are processed prior to the actual compilation by:

• having any Python SPL primitive operators extracted using spl-python-extract

• indexed using spl-make-toolkit

New in version 1.13.

4.5 streamsx-service

4.5.1 Overview

Control commands for a Streaming Analytics service.

4.5.2 Usage

streamsx-service [-h] [--service-name SERVICE_NAME] [--full-response]
{start,status,stop} ...

Control commands for a Streaming Analytics service.

positional arguments:
{start,status,stop} Supported commands
start Start the service instance
status Get the service status.
stop Stop the instance for the service.

optional arguments:

(continues on next page)

158 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

(continued from previous page)

-h, --help show this help message and exit
--service-name SERVICE_NAME

Streaming Analytics service name
--full-response Print the full JSON response.

service.py stop [-h] [--force]

optional arguments:
-h, --help show this help message and exit
--force Stop the service even if jobs are running.

4.5.3 Controlling a Streaming Analytics service

The Streaming Analytics service to control is defined using --service-name SERVICE_NAME. If not provided
then the service name is defined by the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

The named service must exist in the VCAP services definition pointed to by the VCAP_SERVICES environment
variable.

The response from making the control request is printed to standard out in JSON format. By default a minimal response
is printed including the status of the service and the job count. The complete response from the service REST API is
printed if the option --full-response is given.

4.6 streamsx-streamtool

4.6.1 Overview

Command line interface for IBM Streams running on IBM Cloud Pak for Data.

streamsx-streamtool replicates a sub-set of Streams streamtool commands focusing on supporting DevOps
for streaming applications.

streamsx-streamtool is supported for Streams Cloud Pak for Data (5.x) instances A local install of Streams is
not required, simply the installation of the streamsx package. All functionality is implemented through Cloud Pak for
Data and Streams REST apis.

Cloud Pak for Data configuration

The Streams instance and authentication are defined through environment variables, the details depend on if the
Streams instance is running in integrated or standalone configuration.

Integrated configuration

• CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

• STREAMS_INSTANCE_ID - Streams service instance name.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name. Overridden by the --User option.

• STREAMS_PASSWORD - Password for authentication.

4.6. streamsx-streamtool 159

streamsx Documentation, Release 1.14.7

Standalone configuration

• STREAMS_REST_URL - Streams SWS service (REST API) URL, e.g. when the service is exposed as node
port: https://<NODE-IP>:<NODE-PORT>

• STREAMS_BUILD_URL - Streams build service (REST API) URL, e.g. when the service is exposed as node
port: https://<NODE-IP>:<NODE-PORT>. Required for lstoolkit and rmtoolkit.

• STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating
system user name.

• STREAMS_PASSWORD - Password for authentication.

4.6.2 Usage

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
[--jobname job-name] [--jobgroup jobgroup-name]
[--outfile file-name] [--P parameter-name]
[--User user]
sab-pathname

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
[--jobs job-id | --jobnames job-names | --file file-name]
[--User user]
[jobid [jobid ...]]

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
[--jobnames job-names] [--fmt format-spec]
[--xheaders] [--long] [--showtimestamp]
[--User user]

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

streamsx-streamtool mkappconfig [-h] [--property name=value]
[--propfile property-file]
[--description description] [--User user]
config-name

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

streamsx-streamtool chappconfig [-h] [--property name=value]
[--description description] [--User user]
config-name

streamsx-streamtool getappconfig [-h] [--User user] config-name

streamsx-streamtool lstoolkit [-h]
(--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

streamsx-streamtool rmtoolkit [-h]
(--toolkitid toolkit-id | --toolkitname toolkit-name | --toolkitregex toolkit-

→˓regex)
[--User user]

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

(continues on next page)

160 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

(continued from previous page)

streamsx-streamtool updateoperators [-h] [--jobname job-name]
[--jobConfig file-name]
[--parallelRegionWidth parallelRegionName=width]
[--force] [--User user]
[jobid]

4.6.3 submitjob

The streamtool submitjob command previews or submits one job.

Description:

A submitted job runs an application that is defined by an application bundle. Application bundles are created by the
Stream Processing Language (SPL) compiler. A job consists of one or more processing elements (PEs). The PEs
are placed on one or more of the application resources for the instance. The submission fails if the PE placement
constraints can’t be met.

Jobs remain in the system until they are canceled or the instance is stopped.

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
[--jobname job-name] [--jobgroup jobgroup-name]
[--outfile file-name] [--P parameter-name]
[--User user]
sab-pathname

Options and arguments

sab-pathname Specifies the path name for the application bundle file. If you do not specify an absolute
path, the command seeks the file in the directory where you ran the command. Alternatively, you can
specify the path name for the application description language (ADL) file if the application bundle
file exists in the same directory.

-g,–jobConfig: Specifies the name of an external file that defines a job configuration overlay. You can
use a job configuration overlay to set the job configuration when the job is submitted or to change
the configuration of a running job.

-P,–P: Specifies a submission-time parameter and value for the job. You can specify this option multiple
times in the command.

-J,–jobgroup: Specifies the job group. If you do not specify this option, the command uses the following
job group: default.

—jobname: Specifies the name of the job.

—outfile: Specifies the path and file name of the output file in which the command writes the list of
submitted job IDs. The path can be an absolute or relative path. If you do not specify a path, the file
is created in the directory where you run the command.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6. streamsx-streamtool 161

streamsx Documentation, Release 1.14.7

4.6.4 canceljob

The streamtool canceljob command cancels one or more jobs.

This command stops the processing elements (PEs) for the job and removes knowledge of the jobs and their PEs from
the instance. The log files for the processing elements are scheduled for removal.

If you specify to collect the PE logs before they are removed, the operation can time out waiting for the termination of
PEs. If such a timeout occurs, the operation fails and the jobs or PEs are still in the system. The canceljob command
can be run again later to cancel them.

You can use the –force option to ignore a PE termination timeout and force the job to cancel.

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
[--jobs job-id | --jobnames job-names | --file file-name]
[--User user]
[jobid [jobid ...]]

Options and arguments

jobid Specifies a list of job IDs.

-f,–file: Specifies the file that contains a list of job IDs, one per line.

-j,–jobs: Specifies a list of job IDs, which are delimited by commas.

—jobnames: Specifies a list of job names, which are delimited by commas.

—collectlogs: Specifies to collect the log and trace files for each processing element that is associated
with the job.

—force: Specifies to quickly cancel a job and remove the job from the Streams data table.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.5 lsjobs

The streamtool lsjobs command lists the jobs in the instance.

The streamtool lsjobs command provides a health summary for each job. The health summary is an aggregation of
the PE health summaries for the job. If all of the PEs for a job are reported as healthy, the job is reported as healthy.
Otherwise, the job is reported as not healthy. Use the streamtool lspes command to determine the health of PEs.

The command also reports the status of each job. For more information about job states, see the IBM Streams product
documentation.

The date and time that the job was submitted are presented in local time with the iso8601 format: yyyy-mm-
ddThh:mm:ss+/-hhmm, where the final hhmm values are the local offset from UTC. For example: 2010-03-
16T13:41:53-0500.

When job selection options are specified, selected jobs must meet all of the selection criteria. After a cancel request
for a job is processed, this command no longer reports the job or its processing elements (PEs).

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
[--jobnames job-names] [--fmt format-spec]
[--xheaders] [--long] [--showtimestamp]
[--User user]

Options and arguments

-j,–jobs: Specifies a list of job IDs, which are delimited by commas.

162 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

—jobnames: Specifies a list of job names, which are delimited by commas.

-u,–users: Specifies to select from this list of user IDs, which are delimited by commas.

—xheaders: Specifies to exclude headings from the report.

-l,–long: Reports launch count, full host names, and all of the operator instance names for the PEs.

—fmt: Specifies the presentation format. The command supports the following values:

• %Mf: Multiline record format. One line per field.

• %Nf: Name prefixed field table format. One line per job.

• %Tf: Standard table format, which is the default. One line per job.

—showtimestamp: Specifies to show a time stamp in the output to indicate when the command was run.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.6 lsappconfig

The streamtool lsappconfig command lists the available configurations that enable connections to an external applica-
tion.

Retrieve a list of configurations for making a connection to an external application.

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

Options and arguments

—fmt: Specifies the presentation format. The command supports the following values:

• %Mf: Multiline record format. One line per field.

• %Nf: Name prefixed field table format. One line per cfgname.

• %Tf: Standard table format, which is the default. One line per cfgname.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.7 mkappconfig

The streamtool mkappconfig command creates a configuration that enables connection to an external application.

Operators can retrieve the configuration information to make a connection to an external application, such as an
Internet Of Things application. The properties include items that the application needs at runtime, like connection
information and credentials.

Use this command to register properties or a properties file. Create the property file using a name=value syntax.

streamsx-streamtool mkappconfig [-h] [--property name=value]
[--propfile property-file]
[--description description] [--User user]
config-name

Options and arguments

config-name: Name of the app config

4.6. streamsx-streamtool 163

streamsx Documentation, Release 1.14.7

—description: Specifies a description for the application configuration. The description can be 1024
characters in length. If the description contains blank characters, it must be enclosed in single or
double quotation marks. Quotation marks within the description must be preceded by a backslash
().

—property: Specifies a property name and value pair to add to or change in the configuration. This
option can be specified multiple times and has an additive effect.

—propfile: Specifies the path to a file that contains a list of application configuration properties for
connecting to an external application. The properties are listed as name=value pairs, each on a
separate line. Use this option as a way to include multiple configuration properties when you create
an application configuration. Options that you specify at the command line override values that are
specified in this property file.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.8 rmappconfig

The streamtool rmappconfig command removes a configuration that enables connection to an external application.

This command removes a configuration that is used for making a connection to an external application.

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

Options and arguments

config-name: Name of the app config

—noprompt: Specifies to suppress confirmation prompts.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.9 chappconfig

The streamtool chappconfig command updates a configuration that enables connection to an external application.

Use this command to change the configuration properties that are used to make a connection to an external application,
such as an Internet Of Things application. You can change the values of properties or add new properties.

streamsx-streamtool chappconfig [-h] [--property name=value]
[--description description] [--User user]
config-name

Options and arguments

config-name: Name of the app config

—description: Specifies a description for the application configuration. The description can be 1024
characters in length. If the description contains blank characters, it must be enclosed in single or
double quotation marks. Quotation marks within the description must be preceded by a backslash
().

—property: Specifies a property name and value pair to add to or change in the configuration. This
option can be specified multiple times and has an additive effect.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

164 Chapter 4. Scripts

streamsx Documentation, Release 1.14.7

4.6.10 getappconfig

The streamtool getappconfig command displays the properties of a configuration that enables connection to an external
application.

This command retrieves the properties and values of a specific configuration for connecting to an external application.

streamsx-streamtool getappconfig [-h] [--User user] config-name

Options and arguments

config-name: Name of the app config

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

4.6.11 lstoolkit

List toolkits from a build service.

streamsx-streamtool lstoolkit [-h]
(--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

Options and arguments

-a,–all: List all toolkits

-i,–id: List a specific toolkit given its toolkit id

-n,–name: List all toolkits with this name

-r,–regex: List all toolkits where the name matches the given regex pattern

4.6.12 rmtoolkit

Remove toolkits from a build service.

streamsx-streamtool rmtoolkit [-h]
(--id toolkit-id | --name toolkit-name | --regex toolkit-regex)
[--User user]

Options and arguments

-i,–id: Specifies the id of the toolkit to delete

-n,–name: Remove all toolkits with this name

-r,–regex: Remove all toolkits where the name matches the given regex pattern

4.6. streamsx-streamtool 165

streamsx Documentation, Release 1.14.7

4.6.13 uploadtoolkit

Upload a toolkit to a build service.

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

Options and arguments

-p,–path: Specifies the path of the indexed toolkit to upload

New in version 1.13.

4.6.14 updateoperators

Adjust a job configuration while the job is running in order to improve the job performance

streamsx-streamtool updateoperators [-h] [--jobname job-name]
[--jobConfig file-name]
[--parallelRegionWidth parallelRegionName=width]
[--force] [--User user]
[jobid]

Options and arguments

jobid: Specifies a job ID

—jobname: Specifies the name of the job

-g,–jobConfig: Specifies the name of an external file that defines a job configuration overlay. You can
use a job configuration overlay to set the job configuration when the job is submitted or to change
the configuration of a running job.

—parallelRegionWidth: Specifies a parallel region name and its width.

—force: Specifies whether to automatically stop the PEs that need to be stopped.

-U,–User: Specifies an IBM Streams user ID that has authority to run the command.

166 Chapter 4. Scripts

CHAPTER

FIVE

ENVIRONMENTS

5.1 IBM Streaming Analytics service

5.1.1 Overview

IBM® Streaming Analytics for IBM Cloud is powered by IBM® Streams, an advanced analytic platform that you can
use to ingest, analyze, and correlate information as it arrives from different types of data sources in real time. When
you create an instance of the Streaming Analytics service, you get your own instance of IBM® Streams running in
IBM® Cloud, ready to run your IBM® Streams applications.

See also:

Overview at ibm.com

IBM Cloud catalog

Streaming Analytics service documentation

5.1.2 Package support

This streamsx package supports :

• Developing streaming applications in Python that can be submitted to a Streaming Analytics service. See
streamsx.topology.topology , STREAMING_ANALYTICS_SERVICE.

• Submitting streaming applications written in Python or SPL to a Streaming Anlaytics service. See Python
applications, SPL applications.

• Submitting a pre-compiled Streams application bundle (sab file) Python or SPL to a Streaming Anlaytics
service. See Streams application bundles.

• Python bindings to the IBM Streams REST API and the Streaming Analytics REST API. See streamsx.
rest

167

https://www.ibm.com/cloud/streaming-analytics
https://console.bluemix.net/catalog/services/streaming-analytics
https://console.bluemix.net/docs/services/StreamingAnalytics/index.html

streamsx Documentation, Release 1.14.7

5.1.3 Accessing a service

In order to use a Streaming Analytics service you must have access to credentials for the service. There are two
mechanisms used by this package, VCAP services and direct use of Streaming Analytics credentials.

VCAP services

This is the format used by Cloud Foundry for bindable services. The service key for Streaming Analytics service is
streaming-analytics, the value of that key in the VCAP services is a list of accessible services, each service
represented by a separate object.

Each streaming analytics object must have these keys:

• name identifying the name of the service.

• credentials identifying the connection credentials for the service.

Example VCAP services containing two Streaming Analytics services sa-test and sa-prod (with the specific connection
details elided):

{
"streaming-analytics": [
{

"name": "sa-test",
"credentials":
{

"apikey": "...",
"iam_apikey_description": "Auto generated apikey during resource-key operation

→˓for Instance - ...",
"iam_apikey_name": "auto-generated-apikey-...",
"iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
"iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
"v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_

→˓analytics/..."
}

},
{

"name": "sa-prod",
"credentials":
{

"apikey": "...",
"iam_apikey_description": "Auto generated apikey during resource-key operation

→˓for Instance - ...",
"iam_apikey_name": "auto-generated-apikey-...",
"iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
"iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
"v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_

→˓analytics/..."
}

}
]
}

Note: The specific keys in the credentials may differ depending on the service plan.

See also:

168 Chapter 5. Environments

streamsx Documentation, Release 1.14.7

https://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES

Cloud Foundry applications

When a Streaming Analytics service is bound to a Cloud Foundry Python application the environment variable
VCAP_SERVICES is automatically defined and contains a string representation of the JSON VCAP services in-
formation.

Client applications

Client applications are ones that run outside of the IBM Cloud, for example on a local laptop, or applications that are
not bound to a service.

Client applications running must define a valid VCAP services in its JSON format as either:

• In the environment variable VCAP_SERVICES containing a string representation of the JSON VCAP services
information.

• In a file containing a string representation of the JSON VCAP services information and have the file’s absolute
path in either:

– the environment variable VCAP_SERVICES

– the configuration property VCAP_SERVICES when submitting an application using submit()
with context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable
VCAP_SERVICES.

The contents of the file must be manually created, the credentials for the credentials key are obtained from the
Streaming Analytics manage console. Select the Service Credentials page and then copy the required credentials. You
may need to first create credentials. You can an copy the credentials by taking the View credentials action and then
clicking the copy to clipboard icon on the right hand side.

Warning: The credential information in VCAP services is in plain text. Ensure that the any file containing the
information or setting the environment variable has suitable permissions set. For example only readable by the
intended user.

Selecting the service

The Streaming Analyitcs service to use is specifed by its name, the required service much exist in the VCAP service
information using the name key.

The name of the service to use is set by:

• the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

• the configuration property SERVICE_NAME when submitting an application using submit() with
context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable STREAM-
ING_ANALYTICS_SERVICE_NAME.

• the --service-name option to streamsx-runner.

5.1. IBM Streaming Analytics service 169

https://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES

streamsx Documentation, Release 1.14.7

Service definition

The Streaming Analytics service to use may be specified solely using its credentials. The credentials are specified:

• with the configuration property SERVICE_DEFINITION when submitting an application using submit()
with context type STREAMING_ANALYTICS_SERVICE.

• when using streamsx.rest.StreamingAnalyticsConnection.of_definition() to create a
REST connection.

Credentials obtained from the Streaming Analytics manage console. Select the Service Credentials page and then
copy the required credentials. You may need to first create credentials. You can an copy the credentials by taking the
View credentials action and then clicking the copy to clipboard icon on the right hand side.

5.2 IBM Streams Python setup

5.2.1 Developer setup

Developers install the streamsx package Python Package Index (PyPI) to use this functionality:

pip install streamsx

If already installed upgrade to the latest version is recommended:

pip install --upgrade streamsx

A local install of IBM Streams is not required when:

• Using the Streams and Streaming Analytics REST bindings streamsx.rest.

• Devloping and submitting streaming applications using streamsx.topology.topology to Cloud Pak
for Data or Streaming Analytics service on IBM Cloud.

– The environment variable JAVA_HOME must reference a Java 1.8 JRE or JDK/SDK.

A local install of IBM Streams is required when:

• Developing and submitting streaming applications using streamsx.topology.topology to IBM
Streams 4.2, 4.3 distributed or standalone contexts.

– If set the environment variable JAVA_HOME must reference a Java 1.8 JRE or JDK/SDK, otherwise the
Java install from $STREAMS_INSTALL/java is used.

• Creating SPL toolkits with Python primitive operators using streamsx.spl.spl decorators for use with
4.2, 4.3 distributed or standalone applications.

Warning: When using the streamsx package ensure that the environment variable PYTHONPATH does not in-
clude a path ending with com.ibm.streamsx.topology/opt/python/packages. The IBM Streams
environment configuration script streamsprofile.sh modifies or sets PYTHONPATH to include the Python
support from the SPL topology toolkit shipped with the product. This was to support Python before the streamsx
package was available. The recommendation is to unset PYTHONPATH or modify it not to include the path to the
topology toolkit.

Note: The streamsx package is self-contained and does not depend on any SPL topology toolkit (com.ibm.
streamsx.topology) installed under $STREAMS_INSTALL/toolkits or on the SPL compiler’s (sc) toolkit

170 Chapter 5. Environments

streamsx Documentation, Release 1.14.7

path. This is true at SPL compilation time and runtime.

5.2.2 Streaming Analytics service

The service instance has Anaconda installed with Python 3.6 as the runtime environment and has PYTHONHOME
Streams application environment variable pre-configured.

Any streaming applications using Python must use Python 3.6 when submitted to the service instance. The streamsx
package must be installed locally and applications are submitted to the STREAMING_ANALYTICS_SERVICE con-
text.

5.2.3 IBM Cloud Pak for Data

An IBM Streams service instance within Cloud Pak for Data has Anaconda installed with Python 3.6 as the runtime
environment and has PYTHONHOME Streams application environment variable pre-configured.

Any streaming applications using Python must use Python 3.6 when submitted to the service instance.

Streaming applications can be submitted through Jupyter notebooks running in Cloud Pak for Data projects. The
streamsx package is preinstalled and applications are submitted to the DISTRIBUTED context.

Streaming applications can be submitted externally to the OpenShift cluster containing Cloud Pak for Data. The
streamsx package must be installed locally and applications are submitted to the DISTRIBUTED context. The spe-
cific environment variables depend on if the Streams instance is in a integrated or standalone configuration. See
DISTRIBUTED for details.

5.2.4 IBM Streams 4.2, 4.3

For a distributed cluster running Streams Python 3.7, 3.6 or 3.5 may be used.

Anaconda or Miniconda distributions may be used as the Python runtime, these have the advantage of being pre-built
and including a number of standard packages. Ananconda installs may be downloaded at: https://www.continuum.io/
downloads .

If building Python from source then it must be built to support embedding of the runtime with shared libraries
(--enabled-shared option to configure).

Distributed

For distributed the Streams application environment variable PYTHONHOME must be set to the Python install path.

This is set using streamtool as:

streamtool setproperty --application-ev PYTHONHOME=path_to_python_install

The application environment variable may also be set using the Streams console. The Instance Management view has
an Application Environment Variables section. Expanding the details for that section allows modification of the set of
environment variables available to Streams applications.

The Python install path must be accessible on every application resource that will execute Python code within a
Streams application.

5.2. IBM Streams Python setup 171

https://www.continuum.io/downloads
https://www.continuum.io/downloads

streamsx Documentation, Release 1.14.7

Note: The Python version used to declare and submit the application must compatible with the setting of
PYTHONHOME in the instance. For example, if PYTHONHOME Streams application instance variable points to a Python
3.6 install, then Python 3.5 or 3.6 can be used to declare and submit the application.

Standalone

The environment PYTHONHOME must be set to the Python install path.

5.2.5 Bundle Python version compatibility

As of 1.13 Streams application bundles (sab files) invoking Python are binary compatible with a range of Python
releases when using Python 3.

The minimum verson supported is the version of Python used during bundle creation.

The maximum version supported is the highest version of Python with a proposed release schedule.

For example if a sab is built with Python 3.6 then it can be submitted to a Streams instance using 3.6 or higher, up to
& including 3.9 which is the highest Python release with a proposed release schedule as of 1.13.

Note: Compatability across Python releases is dependent on Python’s Stable Application Binary Inteface.

5.3 Indices and tables

• genindex

• modindex

• search

172 Chapter 5. Environments

https://docs.python.org/3/c-api/stable.html

PYTHON MODULE INDEX

b
streamsx.build, 111

c
streamsx.topology.composite, 59
streamsx.topology.context, 37

e
streamsx.ec, 71

o
streamsx.spl.op, 77

r
streamsx.rest, 113
streamsx.rest_primitives, 118

s
streamsx.spl.spl, 95
streamsx.topology.schema, 48
streamsx.topology.state, 56

t
streamsx.spl.toolkit, 93
streamsx.spl.types, 89
streamsx.topology, 3
streamsx.topology.tester, 62
streamsx.topology.tester_runtime, 71
streamsx.topology.topology, 6

173

streamsx Documentation, Release 1.14.7

174 Python Module Index

INDEX

A
activateOption (streamsx.rest_primitives.View at-

tribute), 148
ActiveService (class in streamsx.rest_primitives),

118
ActiveVersion (class in streamsx.rest_primitives),

119
add() (streamsx.topology.context.JobConfig method),

44
add_condition() (streamsx.topology.tester.Tester

method), 63
add_file_dependency()

(streamsx.topology.topology.Topology method),
12

add_pip_package()
(streamsx.topology.topology.Topology method),
13

add_toolkit() (in module streamsx.spl.toolkit), 93
add_toolkit_dependency() (in module

streamsx.spl.toolkit), 93
aggregate() (streamsx.topology.topology.Window

method), 34
aliased_as() (streamsx.topology.topology.Stream

method), 19
all_ports_ready()

(streamsx.spl.spl.PrimitiveOperator method),
107

ApplicationBundle (class in
streamsx.rest_primitives), 120

ApplicationConfiguration (class in
streamsx.rest_primitives), 120

applicationName (streamsx.rest_primitives.Job at-
tribute), 131

applicationResource
(streamsx.rest_primitives.ResourceAllocation
attribute), 142

architecture (streamsx.rest_primitives.ActiveVersion
attribute), 119

architecture (streamsx.rest_primitives.Installation
attribute), 124

as_dict() (streamsx.topology.schema.StreamSchema
method), 53

as_json() (streamsx.topology.topology.Stream
method), 19

as_overlays() (streamsx.topology.context.JobConfig
method), 44

as_string() (streamsx.topology.topology.Stream
method), 19

as_tuple() (streamsx.topology.schema.StreamSchema
method), 54

attribute() (streamsx.spl.op.Invoke method), 80
attribute() (streamsx.spl.op.Map method), 84
attribute() (streamsx.spl.op.Sink method), 86
attribute() (streamsx.spl.op.Source method), 82
autonomous() (streamsx.topology.topology.Stream

method), 20

B
batch() (streamsx.topology.topology.Stream method),

20
Binary (streamsx.topology.schema.CommonSchema at-

tribute), 55
BROADCAST (streamsx.topology.topology.Routing

attribute), 11
bufferCapacitySeconds

(streamsx.rest_primitives.View attribute),
148

bufferCapacityTuples
(streamsx.rest_primitives.View attribute),
148

bufferCapacityUnits
(streamsx.rest_primitives.View attribute),
148

Buffered (streamsx.topology.topology.SubscribeConnection
attribute), 11

build() (in module streamsx.topology.context), 47
BUILD_ARCHIVE (streamsx.topology.context.ContextTypes

attribute), 38
build_version (streamsx.rest_primitives.ActiveVersion

attribute), 119
BuildService (class in streamsx.build), 111
buildVersion (streamsx.rest_primitives.Installation

attribute), 124
BUNDLE (streamsx.topology.context.ContextTypes

175

streamsx Documentation, Release 1.14.7

attribute), 38

C
cancel() (streamsx.rest_primitives.Job method), 131
cancel_job() (streamsx.rest_primitives.StreamingAnalyticsService

method), 145
cancel_job_button()

(streamsx.topology.context.SubmissionResult
method), 46

category() (streamsx.spl.op.Invoke property), 81
category() (streamsx.spl.op.Map property), 85
category() (streamsx.spl.op.Sink property), 87
category() (streamsx.spl.op.Source property), 83
category() (streamsx.topology.topology.Sink prop-

erty), 36
category() (streamsx.topology.topology.Stream prop-

erty), 21
channel() (in module streamsx.ec), 75
checkpoint_period()

(streamsx.topology.topology.Topology prop-
erty), 14

collectionTime (streamsx.rest_primitives.ViewItem
attribute), 147

colocate() (streamsx.spl.op.Invoke method), 81
colocate() (streamsx.spl.op.Map method), 85
colocate() (streamsx.spl.op.Sink method), 87
colocate() (streamsx.spl.op.Source method), 83
colocate() (streamsx.topology.topology.Sink

method), 36
colocate() (streamsx.topology.topology.Stream

method), 21
comment() (streamsx.topology.context.JobConfig prop-

erty), 45
CommonSchema (class in streamsx.topology.schema),

55
complete() (streamsx.topology.topology.PendingStream

method), 33
Composite (class in streamsx.topology.composite), 59
Condition (class in streamsx.topology.tester_runtime),

71
ConfigParams (class in streamsx.topology.context),

42
ConsistentRegionConfig (class in

streamsx.topology.state), 57
ConsistentRegionConfig.Trigger (class in

streamsx.topology.state), 58
contents() (streamsx.topology.tester.Tester method),

64
ContextTypes (class in streamsx.topology.context),

38
count() (streamsx.spl.types.Timestamp method), 90
Counter (streamsx.ec.MetricKind attribute), 76
create_application_configuration()

(streamsx.rest_primitives.Instance method),

126
create_submission_parameter()

(streamsx.topology.topology.Topology method),
14

creationTime (streamsx.rest_primitives.ApplicationConfiguration
attribute), 121

creationTime (streamsx.rest_primitives.Domain at-
tribute), 121

creationTime (streamsx.rest_primitives.Instance at-
tribute), 125

creationuser (streamsx.rest_primitives.Domain at-
tribute), 121

creationuser (streamsx.rest_primitives.Instance at-
tribute), 125

CustomMetric (class in streamsx.ec), 76

D
data (streamsx.rest_primitives.ViewItem attribute), 147
datetime() (streamsx.spl.types.Timestamp method),

91
definition_format_properties

(streamsx.rest_primitives.ResourceTag at-
tribute), 144

delete() (streamsx.rest_primitives.ApplicationConfiguration
method), 121

dependencies() (streamsx.rest_primitives.Toolkit
property), 147

description (streamsx.rest_primitives.ApplicationConfiguration
attribute), 120

description (streamsx.rest_primitives.Metric at-
tribute), 134

description (streamsx.rest_primitives.ResourceTag
attribute), 144

description (streamsx.rest_primitives.View at-
tribute), 148

Direct (streamsx.topology.topology.SubscribeConnection
attribute), 11

display() (streamsx.rest_primitives.View method),
148

display() (streamsx.topology.topology.View method),
32

displayName (streamsx.rest_primitives.Resource at-
tribute), 144

DISTRIBUTED (streamsx.topology.context.ContextTypes
attribute), 39

Domain (class in streamsx.rest_primitives), 121
domain_id() (in module streamsx.ec), 74

E
edition_name (streamsx.rest_primitives.ActiveVersion

attribute), 119
editionName (streamsx.rest_primitives.Installation

attribute), 124

176 Index

streamsx Documentation, Release 1.14.7

end_low_latency()
(streamsx.topology.topology.Stream method),
21

end_parallel() (streamsx.topology.topology.Stream
method), 21

eventual_result() (streamsx.topology.tester.Tester
method), 64

exclude_packages (streamsx.topology.topology.Topology
attribute), 12

ExportedStream (class in streamsx.rest_primitives),
122

Expression (class in streamsx.spl.op), 88
expression() (streamsx.spl.op.Expression static

method), 88
expression() (streamsx.spl.op.Invoke method), 81
expression() (streamsx.spl.op.Map method), 85
expression() (streamsx.spl.op.Sink method), 87
expression() (streamsx.spl.op.Source method), 83
extend() (streamsx.topology.schema.CommonSchema

method), 56
extend() (streamsx.topology.schema.StreamSchema

method), 54
extracting() (in module streamsx.spl.spl), 110

F
fetch_tuples() (streamsx.rest_primitives.View

method), 149
fetch_tuples() (streamsx.topology.topology.View

method), 33
filter (class in streamsx.spl.spl), 106
filter() (streamsx.topology.topology.Stream

method), 21
flat_map() (streamsx.topology.topology.Stream

method), 22
float32() (in module streamsx.spl.types), 92
float64() (in module streamsx.spl.types), 93
for_each (class in streamsx.spl.spl), 107
for_each() (streamsx.topology.topology.Stream

method), 22
FORCE_REMOTE_BUILD

(streamsx.topology.context.ConfigParams
attribute), 42

ForEach (class in streamsx.topology.composite), 61
from_datetime() (streamsx.spl.types.Timestamp

static method), 91
from_overlays() (streamsx.topology.context.JobConfig

static method), 45
from_time() (streamsx.spl.types.Timestamp static

method), 91
full_product_version

(streamsx.rest_primitives.ActiveVersion at-
tribute), 119

fullProductVersion
(streamsx.rest_primitives.Installation at-

tribute), 124

G
Gauge (streamsx.ec.MetricKind attribute), 76
get_active_services()

(streamsx.rest_primitives.Domain method),
122

get_active_services()
(streamsx.rest_primitives.Instance method),
126

get_application_configuration() (in mod-
ule streamsx.ec), 74

get_application_configurations()
(streamsx.rest_primitives.Instance method),
126

get_application_directory() (in module
streamsx.ec), 74

get_connections()
(streamsx.rest_primitives.OperatorInputPort
method), 135

get_connections()
(streamsx.rest_primitives.OperatorOutputPort
method), 136

get_domain() (streamsx.rest.StreamingAnalyticsConnection
method), 116

get_domain() (streamsx.rest.StreamsConnection
method), 115

get_domain() (streamsx.rest_primitives.Instance
method), 126

get_domain() (streamsx.rest_primitives.Job method),
132

get_domain() (streamsx.rest_primitives.View
method), 149

get_domains() (streamsx.rest.StreamingAnalyticsConnection
method), 116

get_domains() (streamsx.rest.StreamsConnection
method), 115

get_exported_streams()
(streamsx.rest_primitives.Instance method),
126

get_host() (streamsx.rest_primitives.Operator
method), 137

get_host() (streamsx.rest_primitives.PE method),
140

get_hosts() (streamsx.rest_primitives.Domain
method), 122

get_hosts() (streamsx.rest_primitives.Instance
method), 126

get_hosts() (streamsx.rest_primitives.Job method),
132

get_imported_streams()
(streamsx.rest_primitives.Instance method),
126

get_input_ports()

Index 177

streamsx Documentation, Release 1.14.7

(streamsx.rest_primitives.Operator method),
138

get_installations()
(streamsx.rest.StreamingAnalyticsConnection
method), 116

get_installations()
(streamsx.rest.StreamsConnection method),
115

get_instance() (streamsx.rest.StreamingAnalyticsConnection
method), 117

get_instance() (streamsx.rest.StreamsConnection
method), 115

get_instance() (streamsx.rest_primitives.Job
method), 132

get_instance() (streamsx.rest_primitives.View
method), 149

get_instance_status()
(streamsx.rest_primitives.StreamingAnalyticsService
method), 145

get_instances() (streamsx.rest.StreamingAnalyticsConnection
method), 117

get_instances() (streamsx.rest.StreamsConnection
method), 116

get_instances() (streamsx.rest_primitives.Domain
method), 122

get_job() (streamsx.rest_primitives.Instance
method), 126

get_job() (streamsx.rest_primitives.Operator
method), 138

get_job() (streamsx.rest_primitives.PE method), 141
get_job() (streamsx.rest_primitives.View method),

149
get_job_group() (streamsx.rest_primitives.Job

method), 132
get_job_groups() (streamsx.rest_primitives.Instance

method), 127
get_jobs() (streamsx.rest_primitives.Instance

method), 127
get_jobs() (streamsx.rest_primitives.ResourceAllocation

method), 143
get_metrics() (streamsx.rest_primitives.Operator

method), 138
get_metrics() (streamsx.rest_primitives.OperatorInputPort

method), 135
get_metrics() (streamsx.rest_primitives.OperatorOutputPort

method), 136
get_metrics() (streamsx.rest_primitives.PE

method), 141
get_metrics() (streamsx.rest_primitives.Resource

method), 144
get_operator_connections()

(streamsx.rest_primitives.Instance method),
127

get_operator_connections()

(streamsx.rest_primitives.Job method), 132
get_operator_output_port()

(streamsx.rest_primitives.ExportedStream
method), 123

get_operators() (streamsx.rest_primitives.Instance
method), 127

get_operators() (streamsx.rest_primitives.Job
method), 132

get_output_ports()
(streamsx.rest_primitives.Operator method),
138

get_pe() (streamsx.rest_primitives.Operator method),
138

get_pe_connections()
(streamsx.rest_primitives.Instance method),
128

get_pe_connections()
(streamsx.rest_primitives.Job method), 132

get_pes() (streamsx.rest_primitives.Instance
method), 128

get_pes() (streamsx.rest_primitives.Job method), 132
get_pes() (streamsx.rest_primitives.ResourceAllocation

method), 143
get_published_topics()

(streamsx.rest_primitives.Instance method),
128

get_resource() (streamsx.rest_primitives.PE
method), 141

get_resource() (streamsx.rest_primitives.ResourceAllocation
method), 143

get_resource() (streamsx.rest_primitives.RestResource
method), 145

get_resource_allocation()
(streamsx.rest_primitives.PE method), 141

get_resource_allocations()
(streamsx.rest_primitives.Domain method),
122

get_resource_allocations()
(streamsx.rest_primitives.Instance method),
128

get_resource_allocations()
(streamsx.rest_primitives.Job method), 133

get_resources() (streamsx.build.BuildService
method), 112

get_resources() (streamsx.rest.StreamingAnalyticsConnection
method), 117

get_resources() (streamsx.rest.StreamsConnection
method), 116

get_resources() (streamsx.rest_primitives.Domain
method), 122

get_streaming_analytics()
(streamsx.rest.StreamingAnalyticsConnection
method), 117

get_streams_version()

178 Index

streamsx Documentation, Release 1.14.7

(streamsx.topology.tester.Tester static method),
64

get_toolkit() (streamsx.build.BuildService
method), 112

get_toolkits() (streamsx.build.BuildService
method), 112

get_view_items() (streamsx.rest_primitives.View
method), 149

get_views() (streamsx.rest_primitives.Instance
method), 128

get_views() (streamsx.rest_primitives.Job method),
133

H
HASH_PARTITIONED (streamsx.topology.topology.Routing

attribute), 11
health (streamsx.rest_primitives.Instance attribute),

125
health (streamsx.rest_primitives.Job attribute), 131
health (streamsx.rest_primitives.PE attribute), 139
Host (class in streamsx.rest_primitives), 123

I
id (streamsx.rest_primitives.Domain attribute), 121
id (streamsx.rest_primitives.Instance attribute), 125
id (streamsx.rest_primitives.Job attribute), 131
id (streamsx.rest_primitives.OperatorConnection

attribute), 134
id (streamsx.rest_primitives.PE attribute), 139
id (streamsx.rest_primitives.PEConnection attribute),

138
id (streamsx.rest_primitives.Resource attribute), 143
id (streamsx.rest_primitives.Toolkit attribute), 146
id (streamsx.rest_primitives.View attribute), 147
ignore() (in module streamsx.spl.spl), 110
ImportedStream (class in streamsx.rest_primitives),

124
include_packages (streamsx.topology.topology.Topology

attribute), 12
index() (streamsx.spl.types.Timestamp method), 91
indexWithinJob (streamsx.rest_primitives.Operator

attribute), 137
indexWithinJob (streamsx.rest_primitives.PE

attribute), 139
indexWithinOperator

(streamsx.rest_primitives.OperatorInputPort
attribute), 135

indexWithinOperator
(streamsx.rest_primitives.OperatorOutputPort
attribute), 136

input_port (class in streamsx.spl.spl), 108
Installation (class in streamsx.rest_primitives), 124
Instance (class in streamsx.rest_primitives), 125
instance_id() (in module streamsx.ec), 74

int16() (in module streamsx.spl.types), 92
int32() (in module streamsx.spl.types), 92
int64() (in module streamsx.spl.types), 92
int8() (in module streamsx.spl.types), 92
Invoke (class in streamsx.spl.op), 80
ipAddress (streamsx.rest_primitives.Host attribute),

123
ipAddress (streamsx.rest_primitives.Resource at-

tribute), 144
is_active() (in module streamsx.ec), 74
is_common() (in module streamsx.topology.schema),

50
is_complete() (streamsx.topology.topology.PendingStream

method), 34
is_standalone() (in module streamsx.ec), 74
isolate() (streamsx.topology.topology.Stream

method), 23

J
Job (class in streamsx.rest_primitives), 130
job() (streamsx.topology.context.SubmissionResult

property), 46
JOB_CONFIG (streamsx.topology.context.ConfigParams

attribute), 42
job_id() (in module streamsx.ec), 74
JobConfig (class in streamsx.topology.context), 43
jobGroup (streamsx.rest_primitives.Job attribute), 131
Json (streamsx.topology.schema.CommonSchema at-

tribute), 55

L
last() (streamsx.topology.topology.Stream method),

23
lastModifiedTime (streamsx.rest_primitives.ApplicationConfiguration

attribute), 121
lastTimeRetrieved

(streamsx.rest_primitives.Metric attribute),
134

launchCount (streamsx.rest_primitives.PE attribute),
139

leader (streamsx.rest_primitives.ActiveService at-
tribute), 119

local_channel() (in module streamsx.ec), 75
local_check() (streamsx.topology.tester.Tester

method), 64
local_max_channels() (in module streamsx.ec),

75
logicalOperatorName

(streamsx.rest_primitives.View attribute),
148

low_latency() (streamsx.topology.topology.Stream
method), 24

Index 179

streamsx Documentation, Release 1.14.7

M
machine_id (streamsx.spl.types.Timestamp attribute),

90
machine_id() (streamsx.spl.types.Timestamp prop-

erty), 91
main_composite() (in module streamsx.spl.op), 88
Map (class in streamsx.spl.op), 84
map (class in streamsx.spl.spl), 105
Map (class in streamsx.topology.composite), 60
map() (streamsx.topology.topology.Stream method), 24
max_channels() (in module streamsx.ec), 75
maximumTupleRate (streamsx.rest_primitives.View

attribute), 148
Metric (class in streamsx.rest_primitives), 134
MetricKind (class in streamsx.ec), 76
metricKind (streamsx.rest_primitives.Metric at-

tribute), 134
metricType (streamsx.rest_primitives.Metric at-

tribute), 134
minimum_os_base_version

(streamsx.rest_primitives.ActiveVersion at-
tribute), 120

minimum_os_patch_version
(streamsx.rest_primitives.ActiveVersion at-
tribute), 120

minimum_streams_version()
(streamsx.topology.tester.Tester static method),
65

minimumOSBaseVersion
(streamsx.rest_primitives.Installation at-
tribute), 125

minimumOSPatchVersion
(streamsx.rest_primitives.Installation at-
tribute), 125

N
name (streamsx.rest_primitives.ApplicationConfiguration

attribute), 120
name (streamsx.rest_primitives.Host attribute), 123
name (streamsx.rest_primitives.Job attribute), 131
name (streamsx.rest_primitives.Metric attribute), 134
name (streamsx.rest_primitives.Operator attribute), 137
name (streamsx.rest_primitives.OperatorInputPort at-

tribute), 135
name (streamsx.rest_primitives.OperatorOutputPort at-

tribute), 136
name (streamsx.rest_primitives.ResourceTag attribute),

144
name (streamsx.rest_primitives.RestResource attribute),

145
name (streamsx.rest_primitives.Toolkit attribute), 146
name (streamsx.rest_primitives.Toolkit.Dependency at-

tribute), 146
name (streamsx.rest_primitives.View attribute), 147

name() (streamsx.topology.topology.Stream property),
25

name() (streamsx.topology.topology.Topology prop-
erty), 15

name_to_runtime_id
(streamsx.topology.topology.Topology at-
tribute), 12

namespace() (streamsx.topology.topology.Topology
property), 15

nanoseconds (streamsx.spl.types.Timestamp at-
tribute), 90

nanoseconds() (streamsx.spl.types.Timestamp prop-
erty), 91

now() (streamsx.spl.types.Timestamp static method), 91
null() (in module streamsx.spl.types), 93

O
of_definition() (streamsx.rest.StreamingAnalyticsConnection

static method), 117
of_endpoint() (streamsx.build.BuildService static

method), 112
of_endpoint() (streamsx.rest_primitives.Instance

static method), 129
of_service() (streamsx.rest_primitives.Instance

static method), 129
Operator (class in streamsx.rest_primitives), 137
OPERATOR_DRIVEN (streamsx.topology.state.ConsistentRegionConfig.Trigger

attribute), 58
operator_driven()

(streamsx.topology.state.ConsistentRegionConfig
static method), 58

OperatorConnection (class in
streamsx.rest_primitives), 134

OperatorInputPort (class in
streamsx.rest_primitives), 135

operatorKind (streamsx.rest_primitives.Operator at-
tribute), 137

OperatorOutputPort (class in
streamsx.rest_primitives), 136

optionalConnections
(streamsx.rest_primitives.PE attribute), 139

output() (streamsx.spl.op.Invoke method), 81
output() (streamsx.spl.op.Map method), 85
output() (streamsx.spl.op.Sink method), 87
output() (streamsx.spl.op.Source method), 83
owner (streamsx.rest_primitives.Instance attribute), 125

P
parallel() (streamsx.topology.topology.Stream

method), 26
params() (streamsx.spl.op.Invoke property), 81
params() (streamsx.spl.op.Map property), 85
params() (streamsx.spl.op.Sink property), 87
params() (streamsx.spl.op.Source property), 83

180 Index

streamsx Documentation, Release 1.14.7

partition() (streamsx.topology.topology.Window
method), 35

path (streamsx.rest_primitives.Toolkit attribute), 146
PE (class in streamsx.rest_primitives), 139
pe_id() (in module streamsx.ec), 74
PEConnection (class in streamsx.rest_primitives), 138
PendingStream (class in

streamsx.topology.topology), 33
pendingTracingLevel

(streamsx.rest_primitives.PE attribute), 140
PERIODIC (streamsx.topology.state.ConsistentRegionConfig.Trigger

attribute), 58
periodic() (streamsx.topology.state.ConsistentRegionConfig

static method), 59
populate() (streamsx.topology.composite.ForEach

method), 61
populate() (streamsx.topology.composite.Map

method), 61
populate() (streamsx.topology.composite.Source

method), 60
primitive_operator (class in streamsx.spl.spl),

109
PrimitiveOperator (class in streamsx.spl.spl), 107
print() (streamsx.topology.topology.Stream method),

27
processId (streamsx.rest_primitives.ActiveService at-

tribute), 119
processId (streamsx.rest_primitives.PE attribute),

140
processorCount (streamsx.rest_primitives.Host at-

tribute), 123
product_name (streamsx.rest_primitives.ActiveVersion

attribute), 120
product_version (streamsx.rest_primitives.ActiveVersion

attribute), 120
productName (streamsx.rest_primitives.Installation

attribute), 125
productVersion (streamsx.rest_primitives.Installation

attribute), 125
properties (streamsx.rest_primitives.ApplicationConfiguration

attribute), 120
properties_definition

(streamsx.rest_primitives.ResourceTag at-
tribute), 144

publish() (streamsx.topology.topology.Stream
method), 27

PublishedTopic (class in streamsx.rest_primitives),
142

Python (streamsx.topology.schema.CommonSchema at-
tribute), 56

R
raw_overlay() (streamsx.topology.context.JobConfig

property), 45

refresh() (streamsx.rest_primitives.ActiveService
method), 119

refresh() (streamsx.rest_primitives.ApplicationBundle
method), 120

refresh() (streamsx.rest_primitives.ApplicationConfiguration
method), 121

refresh() (streamsx.rest_primitives.Domain method),
122

refresh() (streamsx.rest_primitives.ExportedStream
method), 123

refresh() (streamsx.rest_primitives.Host method),
124

refresh() (streamsx.rest_primitives.ImportedStream
method), 124

refresh() (streamsx.rest_primitives.Installation
method), 125

refresh() (streamsx.rest_primitives.Instance
method), 130

refresh() (streamsx.rest_primitives.Job method), 133
refresh() (streamsx.rest_primitives.Metric method),

134
refresh() (streamsx.rest_primitives.Operator

method), 138
refresh() (streamsx.rest_primitives.OperatorConnection

method), 135
refresh() (streamsx.rest_primitives.OperatorInputPort

method), 136
refresh() (streamsx.rest_primitives.OperatorOutputPort

method), 137
refresh() (streamsx.rest_primitives.PE method), 141
refresh() (streamsx.rest_primitives.PEConnection

method), 139
refresh() (streamsx.rest_primitives.Resource

method), 144
refresh() (streamsx.rest_primitives.ResourceAllocation

method), 143
refresh() (streamsx.rest_primitives.RestResource

method), 145
refresh() (streamsx.rest_primitives.Toolkit method),

147
refresh() (streamsx.rest_primitives.View method),

150
refresh() (streamsx.rest_primitives.ViewItem

method), 147
relocatable (streamsx.rest_primitives.PE attribute),

140
require_streams_version()

(streamsx.topology.tester.Tester static method),
66

required (streamsx.rest_primitives.OperatorConnection
attribute), 135

required (streamsx.rest_primitives.PEConnection at-
tribute), 139

requiredConnections

Index 181

streamsx Documentation, Release 1.14.7

(streamsx.rest_primitives.PE attribute), 140
requiredProductVersion

(streamsx.rest_primitives.Toolkit attribute),
146

reserved (streamsx.rest_primitives.ResourceTag at-
tribute), 144

resets() (streamsx.topology.tester.Tester method), 66
Resource (class in streamsx.rest_primitives), 143
resource (streamsx.rest_primitives.RestResource at-

tribute), 145
resource_tags() (streamsx.spl.op.Invoke property),

82
resource_tags() (streamsx.spl.op.Map property),

85
resource_tags() (streamsx.spl.op.Sink property),

88
resource_tags() (streamsx.spl.op.Source property),

83
resource_tags() (streamsx.topology.topology.Sink

property), 37
resource_tags() (streamsx.topology.topology.Stream

property), 28
resource_url() (streamsx.build.BuildService prop-

erty), 113
resource_url() (streamsx.rest.StreamingAnalyticsConnection

property), 117
resource_url() (streamsx.rest.StreamsConnection

property), 116
ResourceAllocation (class in

streamsx.rest_primitives), 142
ResourceTag (class in streamsx.rest_primitives), 144
resourceType (streamsx.rest_primitives.ActiveService

attribute), 119
resourceType (streamsx.rest_primitives.Domain at-

tribute), 121
resourceType (streamsx.rest_primitives.ExportedStream

attribute), 122
resourceType (streamsx.rest_primitives.Host at-

tribute), 123
resourceType (streamsx.rest_primitives.ImportedStream

attribute), 124
resourceType (streamsx.rest_primitives.Installation

attribute), 124
resourceType (streamsx.rest_primitives.Instance at-

tribute), 125
resourceType (streamsx.rest_primitives.Job at-

tribute), 131
resourceType (streamsx.rest_primitives.Metric at-

tribute), 134
resourceType (streamsx.rest_primitives.Operator at-

tribute), 137
resourceType (streamsx.rest_primitives.OperatorConnection

attribute), 135
resourceType (streamsx.rest_primitives.OperatorInputPort

attribute), 135
resourceType (streamsx.rest_primitives.OperatorOutputPort

attribute), 136
resourceType (streamsx.rest_primitives.PE at-

tribute), 139
resourceType (streamsx.rest_primitives.PEConnection

attribute), 139
resourceType (streamsx.rest_primitives.ResourceAllocation

attribute), 142
resourceType (streamsx.rest_primitives.Toolkit at-

tribute), 146
resourceType (streamsx.rest_primitives.View at-

tribute), 148
resourceType (streamsx.rest_primitives.ViewItem at-

tribute), 147
restartable (streamsx.rest_primitives.PE attribute),

140
RestResource (class in streamsx.rest_primitives), 145
restrictedTags (streamsx.rest_primitives.Host at-

tribute), 123
result (streamsx.topology.tester.Tester attribute), 69
retrieve_console_log()

(streamsx.rest_primitives.PE method), 141
retrieve_log_trace()

(streamsx.rest_primitives.Job method), 133
retrieve_trace() (streamsx.rest_primitives.PE

method), 142
ROUND_ROBIN (streamsx.topology.topology.Routing at-

tribute), 11
Routing (class in streamsx.topology.topology), 11
rstring() (in module streamsx.spl.types), 93
run() (in module streamsx.topology.context), 48
run_for() (streamsx.topology.tester.Tester method),

66
runtime_id() (streamsx.topology.topology.Stream

property), 28

S
SC_OPTIONS (streamsx.topology.context.ConfigParams

attribute), 42
schedulerStatus (streamsx.rest_primitives.ResourceAllocation

attribute), 142
schema (streamsx.rest_primitives.PublishedTopic at-

tribute), 142
schema() (streamsx.topology.schema.CommonSchema

method), 56
schema() (streamsx.topology.schema.StreamSchema

method), 54
seconds (streamsx.spl.types.Timestamp attribute), 90
seconds() (streamsx.spl.types.Timestamp property),

91
SERVICE_DEFINITION

(streamsx.topology.context.ConfigParams
attribute), 42

182 Index

streamsx Documentation, Release 1.14.7

SERVICE_NAME (streamsx.topology.context.ConfigParams
attribute), 42

services (streamsx.rest_primitives.Host attribute),
123

session (streamsx.rest.StreamsConnection attribute),
115

set_consistent() (streamsx.topology.topology.Stream
method), 29

set_parallel() (streamsx.topology.topology.Stream
method), 29

setup_distributed()
(streamsx.topology.tester.Tester static method),
66

setup_standalone()
(streamsx.topology.tester.Tester static method),
68

setup_streaming_analytics()
(streamsx.topology.tester.Tester static method),
68

shutdown() (in module streamsx.ec), 74
Sink (class in streamsx.spl.op), 86
Sink (class in streamsx.topology.topology), 36
Source (class in streamsx.spl.op), 82
source (class in streamsx.spl.spl), 104
Source (class in streamsx.topology.composite), 60
source() (streamsx.topology.topology.Topology

method), 15
split() (streamsx.topology.topology.Stream method),

30
SSL_VERIFY (streamsx.topology.context.ConfigParams

attribute), 43
STANDALONE (streamsx.topology.context.ContextTypes

attribute), 41
start_data_fetch()

(streamsx.rest_primitives.View method),
150

start_data_fetch()
(streamsx.topology.topology.View method),
33

start_instance() (streamsx.rest_primitives.StreamingAnalyticsService
method), 145

startedBy (streamsx.rest_primitives.Job attribute),
131

startTime (streamsx.rest_primitives.ActiveService at-
tribute), 119

startTime (streamsx.rest_primitives.Instance at-
tribute), 125

status (streamsx.rest_primitives.ActiveService at-
tribute), 119

status (streamsx.rest_primitives.Domain attribute),
121

status (streamsx.rest_primitives.Host attribute), 123
status (streamsx.rest_primitives.Instance attribute),

125

status (streamsx.rest_primitives.Job attribute), 131
status (streamsx.rest_primitives.PE attribute), 140
status (streamsx.rest_primitives.PEConnection at-

tribute), 139
status (streamsx.rest_primitives.Resource attribute),

144
status (streamsx.rest_primitives.ResourceAllocation

attribute), 143
statusReason (streamsx.rest_primitives.PE at-

tribute), 140
stop_data_fetch() (streamsx.rest_primitives.View

method), 150
stop_data_fetch()

(streamsx.topology.topology.View method),
33

stop_instance() (streamsx.rest_primitives.StreamingAnalyticsService
method), 145

Stream (class in streamsx.topology.topology), 18
stream() (streamsx.spl.op.Map property), 86
stream() (streamsx.spl.op.Source property), 84
STREAMING_ANALYTICS_SERVICE

(streamsx.topology.context.ContextTypes
attribute), 41

StreamingAnalyticsConnection (class in
streamsx.rest), 116

StreamingAnalyticsService (class in
streamsx.rest_primitives), 145

streamName (streamsx.rest_primitives.OperatorOutputPort
attribute), 136

streams() (streamsx.topology.topology.Topology
property), 17

STREAMS_CONNECTION
(streamsx.topology.context.ConfigParams
attribute), 43

streams_connection
(streamsx.topology.tester.Tester attribute),
69

StreamSchema (class in streamsx.topology.schema),
50

StreamsConnection (class in streamsx.rest), 114
streamsx.build (module), 111
streamsx.ec (module), 71
streamsx.rest (module), 113
streamsx.rest_primitives (module), 118
streamsx.spl.op (module), 77
streamsx.spl.spl (module), 95
streamsx.spl.toolkit (module), 93
streamsx.spl.types (module), 89
streamsx.topology (module), 3
streamsx.topology.composite (module), 59
streamsx.topology.context (module), 37
streamsx.topology.schema (module), 48
streamsx.topology.state (module), 56
streamsx.topology.tester (module), 62

Index 183

streamsx Documentation, Release 1.14.7

streamsx.topology.tester_runtime (mod-
ule), 71

streamsx.topology.topology (module), 6
String (streamsx.topology.schema.CommonSchema at-

tribute), 56
style() (streamsx.topology.schema.StreamSchema

property), 54
submission_parameters()

(streamsx.topology.context.JobConfig prop-
erty), 45

submission_result (streamsx.topology.tester.Tester
attribute), 69

SubmissionResult (class in
streamsx.topology.context), 46

submit() (in module streamsx.topology.context), 47
submit() (streamsx.spl.spl.PrimitiveOperator

method), 108
submit_job() (streamsx.rest_primitives.ApplicationBundle

method), 120
submit_job() (streamsx.rest_primitives.Instance

method), 130
submit_job() (streamsx.rest_primitives.StreamingAnalyticsService

method), 145
submitTime (streamsx.rest_primitives.Job attribute),

131
subscribe() (streamsx.topology.topology.Topology

method), 18
SubscribeConnection (class in

streamsx.topology.topology), 11

T
tag (streamsx.rest_primitives.Host attribute), 123
tags (streamsx.rest_primitives.Resource attribute), 144
target_pe_count()

(streamsx.topology.context.JobConfig prop-
erty), 45

test() (streamsx.topology.tester.Tester method), 68
Tester (class in streamsx.topology.tester), 63
Time (streamsx.ec.MetricKind attribute), 76
time() (streamsx.spl.types.Timestamp method), 91
Timestamp (class in streamsx.spl.types), 90
Toolkit (class in streamsx.rest_primitives), 146
TOOLKIT (streamsx.topology.context.ContextTypes at-

tribute), 41
Toolkit.Dependency (class in

streamsx.rest_primitives), 146
topic (streamsx.rest_primitives.PublishedTopic at-

tribute), 142
Topology (class in streamsx.topology.topology), 12
tracing() (streamsx.topology.context.JobConfig prop-

erty), 46
tracingLevel (streamsx.rest_primitives.PE at-

tribute), 140

trigger() (streamsx.topology.topology.Window
method), 35

tuple_check() (streamsx.topology.tester.Tester
method), 69

tuple_count() (streamsx.topology.tester.Tester
method), 70

type (streamsx.rest_primitives.ActiveService attribute),
119

type_checking (streamsx.topology.topology.Topology
attribute), 12

U
uint16() (in module streamsx.spl.types), 92
uint32() (in module streamsx.spl.types), 92
uint64() (in module streamsx.spl.types), 92
uint8() (in module streamsx.spl.types), 92
union() (streamsx.topology.topology.Stream method),

31
update() (streamsx.rest_primitives.ApplicationConfiguration

method), 121
update_operators() (streamsx.rest_primitives.Job

method), 133
upload_bundle() (streamsx.rest_primitives.Instance

method), 130
upload_toolkit() (streamsx.build.BuildService

method), 113

V
value (streamsx.rest_primitives.Metric attribute), 134
value() (streamsx.ec.CustomMetric property), 77
VCAP_SERVICES (streamsx.topology.context.ConfigParams

attribute), 43
version (streamsx.rest_primitives.Toolkit attribute),

146
version (streamsx.rest_primitives.Toolkit.Dependency

attribute), 147
View (class in streamsx.rest_primitives), 147
View (class in streamsx.topology.topology), 32
view() (streamsx.topology.topology.Stream method),

31
ViewItem (class in streamsx.rest_primitives), 147

W
Window (class in streamsx.topology.topology), 34

X
XML (streamsx.topology.schema.CommonSchema at-

tribute), 56

184 Index

	Python Application API for Streams
	streamsx.topology
	streamsx.topology.topology
	streamsx.topology.context
	streamsx.topology.schema
	streamsx.topology.state
	streamsx.topology.composite
	streamsx.topology.tester
	streamsx.topology.tester_runtime
	streamsx.ec
	streamsx.spl.op
	streamsx.spl.types
	streamsx.spl.toolkit

	SPL primitive Python operators
	streamsx.spl.spl

	Streams Python REST API
	streamsx.build
	streamsx.rest
	streamsx.rest_primitives

	Scripts
	spl-python-extract
	streamsx-info
	streamsx-runner
	streamsx-sc
	streamsx-service
	streamsx-streamtool

	Environments
	IBM Streaming Analytics service
	IBM Streams Python setup
	Indices and tables

	Python Module Index
	Index

