

IBM Streams Python support

Python APIs for use with IBM® Streaming Analytics service on
IBM Cloud and on-premises IBM Streams.

Python Application API for Streams

Module that allows the definition and execution of streaming
applications implemented in Python.
Applications use Python code to process tuples and tuples are Python objects.

SPL operators may also be invoked from Python applications to allow
use of existing IBM Streams toolkits.

See topology

	streamsx.topology

	Python application support for IBM Streams.

	streamsx.topology.topology

	Streaming application definition.

	streamsx.topology.context

	Context for submission and build of topologies.

	streamsx.topology.schema

	Schemas for streams.

	streamsx.topology.state

	Application state.

	streamsx.topology.composite

	Composite transformations.

	streamsx.topology.tester

	Testing support for streaming applications.

	streamsx.topology.tester_runtime

	Runtime tester functionality.

	streamsx.ec

	Access to the IBM Streams execution context.

	streamsx.spl.op

	Integration of SPL operators.

	streamsx.spl.types

	SPL type definitions.

	streamsx.spl.toolkit

	SPL toolkit integration.

SPL primitive Python operators

SPL primitive Python operators provide the ability
to perform tuple processing using Python in an SPL application.

A Python function or class is simply turned into an SPL primitive operator
through provided decorators.

SPL (Streams Processing Language) is a domain specific language for streaming
analytics supported by Streams.

	streamsx.spl.spl

	SPL Python primitive operators.

Streams Python REST API

Module that allows interaction with an running Streams instance or
service through HTTPS REST APIs.

	streamsx.build

	REST API bindings for IBM® Streams Cloud Pak for Data build service.

	streamsx.rest

	REST API bindings for IBM® Streams & Streaming Analytics service.

	streamsx.rest_primitives

	Primitive objects for REST bindings.

Scripts

The streamsx package provides a number of command line scripts.

	spl-python-extract
	Overview

	Usage

	SPL Python primitive operators

	streamsx-info
	Overview

	Usage

	streamsx-runner
	Overview

	Streaming Analytics service

	Job submission

	Bundle creation

	Usage

	Submitting to Streaming Analytics service
	Python applications

	SPL applications

	Streams application bundles

	Job options

	Creating Streams application bundles

	streamsx-sc
	Overview
	Cloud Pak for Data configuration
	Integrated configuration

	Standalone configuration

	Usage

	Toolkits

	streamsx-service
	Overview

	Usage

	Controlling a Streaming Analytics service

	streamsx-streamtool
	Overview
	Cloud Pak for Data configuration
	Integrated configuration

	Standalone configuration

	Usage

	submitjob

	canceljob

	lsjobs

	lsappconfig

	mkappconfig

	rmappconfig

	chappconfig

	getappconfig

	lstoolkit

	rmtoolkit

	uploadtoolkit

	updateoperators

Environments

	IBM Streaming Analytics service
	Overview

	Package support

	Accessing a service
	VCAP services
	Cloud Foundry applications

	Client applications

	Selecting the service

	Service definition

	IBM Streams Python setup
	Developer setup

	Streaming Analytics service

	IBM Cloud Pak for Data

	IBM Streams 4.2, 4.3
	Distributed

	Standalone

	Bundle Python version compatibility

Restrictions and known bugs

	Restrictions and known bugs

Indices and tables

	Index

	Module Index

	Search Page

streamsx.topology

Python application support for IBM Streams.

Overview

IBM® Streams is an advanced analytic platform that allows user-developed applications to quickly ingest,
analyze and correlate information as it arrives from thousands of real-time sources.
Streams can handle very high data throughput rates, millions of events or messages per second.

With this API Python developers can build streaming applications that can be executed using IBM Streams,
including the processing being distributed across multiple computing resources (hosts or machines) for scalability.

IBM Streams is also available on IBM Cloud through IBM Streaming Analytics service

Creating Applications

Applications are created by declaring a flow graph contained
in a Topology instance.

For details see streamsx.topology.topology.

Extensions

This package (streamsx) provides the core functionality to build
streaming applications in Python for Streams.

Additional streamsx.* packages are available that provide adapters to
external systems, analytics and streaming primitives. This include:

	Apache Kafka integration - streamsx.kafka [https://pypi.org/project/streamsx.kafka/]

	Database integration - streamsx.database [https://pypi.org/project/streamsx.database/]

	Geospatial analytics- streamsx.geospatial [https://pypi.org/project/streamsx.geospatial/]

	IBM Event Streams integration - streamsx.eventstreams [https://pypi.org/project/streamsx.eventstreams/]

	MQTT integration - streamsx.mqtt [https://pypi.org/project/streamsx.mqtt/]

	Cloud Object Storage integration - streamsx.objectstorage [https://pypi.org/project/streamsx.objectstorage/]

	Streaming primitives - streamsx.standard [https://pypi.org/project/streamsx.standard/]

A full list of available packages is at : https://pypi.org/search?q=streamsx

Microservices

Publish-subscribe provides the abiltity to connect streams between independent
IBM Streams applications regardless of their implementation language.
This allows a microservice approach [https://developer.ibm.com/streamsdev/2016/09/02/analytics-microservice-architecture-with-ibm-streams/]
where a Streams application acting as a service publishes one
or more streams. Subscriber services then subscribe to those streams
without requiring any knowledge of how a stream is published.

Publish-subscribe overview

Applications can publish streams to a topic name which can then be
subscribed to by other applications (or even the same application).
Publish-subscribe works across applications written in SPL and those written
using the Java/Scala and Python application APIs.

A subscriber matches a publisher if their topic filter matches a
publisher’s topic name and the stream type (schema) is an exact match to that
of the publisher. It is recommended that a single stream type is used
for a topic name.

A topic is a string value (encoded with UTF-8), based upon the
MQTT topic style [http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#appendix-a]

Topic names for publishing a stream:

	Must be at least one character long.

	Use / as a level separator, zero length topic levels are valid.

	Must not include wild card characters + and #.

	Must not include the Unicode character NULL (U+0000).

Topic filters for subscribing to streams:

	Must be at least one character long.

	Use / as a level separator.

	Must not include the Unicode character NULL (U+0000).

	+ is a single-level wildcard character that can be used at any level, but it must occupy the entire level. +, a/b/+, +/b/+ and +/b are valid but a/b/c+ is not valid.

	# is a wildcard character that matches any number of levels including the parent and any number of child levels. The multi-level wildcard character must be specified either on its own or following a topic level separator. In either case it must be the last character specified in the topic filter. # and ‘a/b/#’ are valid but a/b/c# and a/#/c are not valid.

Without a wildcard character a topic filter is an exact match for a topic name
so that filter a/b/c only matches a/b/c.

Single-level filter (+) match examples are:

	filter + matches a and b but not a/b

	filter a/+ matches a/b, a/c and a/ but not a, b/c or a/b/c

	filter +/+ matches a/b, b/c, d/ and / but not a or a/b/c

Multi-level filter (#) match examples are:

	filter # matches every topic name such as a, b/c, //

	filter a/b/# matches a/b (parent), a/b/c, a/b/d and a/b/c/d

Note

A publish-subscribe match requires the stream type
to match as well as the topic filter matching the topic name.

Publish-subscribe is a many to many relationship,
any number of publishers can publish to the same topic
and stream type, and there can be many subscribers to a topic.

For example a telco ingest microservice/application may process
Call Detail Records from network switches and publish processed
records on multiple topics, cdr/voice/normal,
cdr/voice/dropped, cdr/sms, etc.
by publishing each processed stream with its own topic.
Then a dropped call analytic microservice would subscribe to the
cdr/voice/dropped topic.

Publish-subscribe is dynamic, using IBM Streams
dynamic connections, an application
can be submitted that subscribes to topics
published by other already running applications.
Once the new application has initialized, it will
start consuming tuples from published streams from existing applications.
And any stream the new application publishes will be subscribed to
by existing applications where the topic and stream type matches.

An application only receives tuples that are published while
it is connected, thus tuples are lost during a connection failure.

A Python application publishes streams using publish()
and subscribes using subscribe().

A stream of Python tuples can only be subscribed to by Python Streams applications. All other
types (schemas) can be subscribed to by any Streams application.

Module contents

streamsx.topology.topology

Streaming application definition.

Overview

IBM Streams is an advanced analytic platform that allows user-developed
applications to quickly ingest, analyze and correlate information as it
arrives from thousands of real-time sources.
Streams can handle very high data throughput rates, millions of events
or messages per second.

With this API Python developers can build streaming applications
that can be executed using IBM Streams, including the processing
being distributed across multiple computing resources
(hosts or machines) for scalability.

Topology

A Topology declares a graph of streams and operations against
tuples (data items) on those streams.

After being declared, a Topology is submitted to be compiled into
a Streams application bundle (sab file) and then executed.
The sab file is a self contained bundle that can be executed
in a distributed Streams instance either using the Streaming
Analytics service on IBM Cloud or an on-premise
IBM Streams installation.

The compilation step invokes the Streams compiler to produce a bundle.
This effectively, from a Python point of view, produces a runnable
version of the Python topology that includes application
specific Python C extensions to optimize performance.

The bundle also includes any required Python packages or modules
that were used in the declaration of the application, excluding
ones that are in a directory path containing site-packages.

The Python standard package tool pip uses a directory structure
including site-packages when installing packages. Packages installed
with pip can be included in the bundle with
add_pip_package() when using a build service.
This avoids the requirement to have packages be preinstalled in cloud environments.

Local Python packages and modules containing callables used in transformations
such as map() are copied into the bundle from their
local location. The addition of local packages to the bundle can be controlled
with Topology.include_packages and
Topology.exclude_packages.

The Streams runtime distributes the application’s operations
across the resources available in the instance.

Note

Topology represents a declaration of a streaming application that
will be executed by a Streams instance as a job, either using the Streaming Analytics
service on IBM Cloud or an on-premises distributed instance.
Topology does not represent a running application, so an instance of Stream class does not contain
the tuples, it is only a declaration of a stream.

Stream

A Stream can be an infinite sequence of tuples, such as a stream for a traffic flow sensor.
Alternatively, a stream can be finite, such as a stream that is created from the contents of a file.
When a streams processing application contains infinite streams, the application runs continuously without ending.

A stream has a schema that defines the type of each tuple on the stream.
The schema for a stream is either:

	Python - A tuple may be any Python object. This is the default when the schema is not explictly or implicitly set.

	String - Each tuple is a Unicode string.

	Binary - Each tuple is a blob.

	Json - Each tuple is a Python dict that can be expressed as a JSON object.

	Structured - A stream that has a structured schema of a ordered list of attributes, with each attribute having a fixed type (e.g. float64 or int32) and a name. The schema of a structured stream is defined using typed named tuple or StreamSchema.

A stream’s schema is implictly dervied from type hints declared for the callable
of the transform that produces it. For example readings defined as follows would have a structured schema matching SensorReading

class SensorReading(typing.NamedTuple):
 sensor_id: str
 ts: int
 reading: float

def reading_from_json(value:dict) -> SensorReading:
 return SensorReading(value['id'], value['timestamp'], value['reading'])

topo = Topology()
json_readings = topo.source(HttpReadings()).as_json()
readings = json_readings.map(reading_from_json)

Deriving schemas from type hints can be disabled by setting the topology’s
type_checking attribute to false, for example this would change readings
in the previous example to have generic Python object schema Python

topo = Topology()
topo.type_checking = False

Stream processing

Callables

A stream is processed to produce zero or more transformed streams,
such as filtering a stream to drop unwanted tuples, producing a stream
that only contains the required tuples.

Streaming processing is per tuple based, as each tuple is submitted to a stream consuming operators
have their processing logic invoked for that tuple.

A functional operator is declared by methods on Stream such as map() which
maps the tuples on its input stream to tuples on its output stream. Stream uses a functional model
where each stream processing operator is defined in terms a Python callable that is invoked passing
input tuples and whose return defines what output tuples are submitted for downstream processing.

The Python callable used for functional processing in this API may be:

	A Python lambda function.

	A Python function.

	An instance of a Python callable class.

For example a stream words containing only string objects can be
processed by a filter() using a lambda function:

Filter the stream so it only contains words starting with py
pywords = words.filter(lambda word : word.startswith('py'))

When a callable has type hints they are used to:

	define the schema of the resulting transformation, see Stream.

	type checking the correctness of the transformation at topology declaration time.

For example if the callable defining the source had type hints that indicated
it was an iterator of str objects then the schema of the resultant stream
would be String. If this
source stream then underwent a Stream.map() transform with a callable
that had a type hint for its argument, a check is made to ensure
that the type of the argument is compatible with str.

Type hints are maintained through transforms regardless of resultant schema.
For example a transform that has a return type hint of int defines
the schema as Python,
but the type hint is retained even though the schema is generic. Thus an
error is raised at topology declaration time if a downstream transformation
uses a callable with a type hint that is incompatible with being passed an int.

How type hints are used is specific to each transformation, such as
source(), map(), filter() etc.

Type checking can be disabled by setting the topology’s type_checking attribute to false.

When a callable is a lambda or defined inline (defined in the main Python script,
a notebook or an interactive session) then a serialized copy of its definition becomes part of the
topology. The supported types of captured globals for these callables is limited to
avoid increasing the size of the application and serialization failures due non-serializable
objects directly or indirectly referenced from captured globals. The supported types of captured globals
are constants (int, str, float, bool, bytes, complex), modules, module attributes (e.g. classes, functions and variables
defined in a module), inline classes and functions. If a lambda or inline callable causes an exception due to unsupported global
capture then moving it to its own module is a solution.

Due to Python bug 36697 [https://bugs.python.org/issue36697] a lambda or inline callable can
incorrect capture a global variable. For example an inline class using a attribute of self.model
will incorrectly capture the global model even if the global variable model is never used within the class.
To workaround this bug use attribute or variable names that do not shadow global variables
(e.g. self._model).

Due to issue 2336 [https://github.com/IBMStreams/streamsx.topology/issues/2336] an inline class using super() will cause an AttributeError at runtime. Workaround is to call the super class’s method directly, for example replace this code:

class A(X):
 def __init__(self):
 super().__init__()

with:

class A(X):
 def __init__(self):
 X.__init__(self)

or move the class to a module.

Stateful operations

Use of a class instance allows the operation to be stateful by maintaining state in instance
attributes across invocations.

Note

For support with consistent region or checkpointing instances should ensure that the object’s state can be pickled. See https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects

Initialization and shutdown

Execution of a class instance effectively run in a context manager so that an instance’s __enter__
method is called when the processing element containing the instance is initialized
and its __exit__ method called when the processing element is stopped. To take advantage of this
the class must define both __enter__ and __exit__ methods.

Note

Since an instance of a class is passed to methods such as
map() __init__ is only called when the topology is declared, not at runtime.
Initialization at runtime, such as opening connections, occurs through the __enter__ method.

Example of using __enter__ to create custom metrics:

import streamsx.ec as ec

class Sentiment(object):
 def __init__(self):
 pass

 def __enter__(self):
 self.positive_metric = ec.CustomMetric(self, "positiveSentiment")
 self.negative_metric = ec.CustomMetric(self, "negativeSentiment")

 def __exit__(self, exc_type, exc_value, traceback):
 pass

 def __call__(self):
 pass

When an instance defines a valid __exit__ method then it will be called with an exception when:

	the instance raises an exception during processing of a tuple

	a data conversion exception is raised converting a value to an structured schema tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing processing element will be terminated.

Note

The __exit__ method requires four parameters, whereas the last three parameters are set when exception is raised only:

def __exit__(self, exc_type, exc_value, traceback):
 if exc_type:
 print(str(exc_type.__name__))
 ...

Tuple semantics

Python objects on a stream may be passed by reference between callables (e.g. the value returned by a map callable may be passed by reference to a following filter callable). This can only occur when the functions are executing in the same PE (process). If an object is not passed by reference a deep-copy is passed. Streams that cross PE (process) boundaries are always passed by deep-copy.

Thus if a stream is consumed by two map and one filter callables in the same PE they may receive the same object reference that was sent by the upstream callable. If one (or more) callable modifies the passed in reference those changes may be seen by the upstream callable or the other callables. The order of execution of the downstream callables is not defined. One can prevent such potential non-deterministic behavior by one or more of these techniques:

	Passing immutable objects

	Not retaining a reference to an object that will be submitted on a stream

	Not modifying input tuples in a callable

	Using copy/deepcopy when returning a value that will be submitted to a stream.

Applications cannot rely on pass-by reference, it is a performance optimization that can be made in some situations when stream connections are within a PE.

Application log and trace

IBM Streams provides application trace and log services which are
accesible through standard Python loggers from the logging module.

See Application log and trace.

SPL operators

In addition an application declared by Topology can include stream processing defined by SPL primitive or
composite operators. This allows reuse of adapters and analytics provided by IBM Streams,
open source and third-party SPL toolkits.

See streamsx.spl.op

Module contents

Module contents

Classes

	PendingStream

	Pending stream connection.

	Routing

	Defines how tuples are routed to channels in a parallel region.

	Sink

	Termination of a Stream.

	Stream

	The Stream class is the primary abstraction within a streaming application.

	SubscribeConnection

	Connection mode between a subscriber and matching publishers.

	Topology

	The Topology class is used to define data sources, and is passed as a parameter when submitting an application.

	View

	The View class provides access to a continuously updated sampling of data items on a Stream after submission.

	Window

	Declaration of a window of tuples on a Stream.

	
class streamsx.topology.topology.Routing

	Bases: enum.Enum

Defines how tuples are routed to channels in a
parallel region.

A parallel region is started by parallel()
and ended with end_parallel() or for_each().

	
BROADCAST = 0

	Tuples are routed to every channel in the parallel region.

	
HASH_PARTITIONED = 3

	Tuples are routed based upon a hash value so that tuples with the same hash
and thus same value are always routed to the same channel. When a hash function is
specified it is passed the tuple and the return value is the hash. When no hash
function is specified then hash(tuple) is used.

Each tuple is only sent to a single channel.

Warning

A consistent hash function is required to guarantee that a tuple
with the same value is always routed to the same channel. hash() is not
consistent in that for types str, bytes and datetime objects are “salted”
with an unpredictable random value (Python 3.5). Thus if the processing element is
restarted channel routing for a hash based upon a str, bytes or datetime will change.
In addition code executing in the channels can see a different
hash value to other channels and the execution that routed the tuple due to
being in different processing elements.

	
KEY_PARTITIONED = 2

	Tuples are routed based upon specified partitioning keys.
The splitter routes tuples that have the same values for these keys (list of attributes) to the same parallel channel.
The keys must exist in the tuple type that is specified for the input stream.
Requires a structured stream StreamSchema or named tuple as input stream.

Each tuple is only sent to a single channel.

	
ROUND_ROBIN = 1

	Tuples are routed to maintain an even distribution of tuples to the channels.

Each tuple is only sent to a single channel.

	
class streamsx.topology.topology.SubscribeConnection

	Bases: enum.Enum

Connection mode between a subscriber and matching publishers.

New in version 1.9.

See also

subscribe()

	
Buffered = 1

	Buffered connection between a subscriber and and matching publishers.

With a buffered connection tuples from publishers are placed in
a single queue owned by the subscriber. This allows a slower
subscriber to handle brief spikes in tuples from publishers.

A subscriber can fully isolate itself from matching publishers
by adding a CongestionPolicy that drops tuples
when the queue is full. In this case when the subscriber is
not able to keep up with the tuple rate from all matching subscribers
it will have a minimal effect on matching publishers.

	
Direct = 0

	Direct connection between a subscriber and and matching publishers.

When connected directly a slow subscriber will cause back-pressure
against the publishers, forcing them to slow tuple processing to
the slowest publisher.

	
class streamsx.topology.topology.Topology(name=None, namespace=None, files=None)

	Bases: object

The Topology class is used to define data sources, and is passed as a parameter when submitting an application. Topology keeps track of all sources, sinks, and transformations within your application.

Submission of a Topology results in a Streams application that has
the name namespace::name.

	Parameters

	
	name (str) – Name of the topology. Defaults to a name dervied from the calling evironment if it can be determined, otherwise a random name.

	namespace (str) – Namespace of the topology. Defaults to a name dervied from the calling evironment if it can be determined, otherwise a random name.

	
include_packages

	Python package names to be included in the built application. Any package in this list is copied into the bundle and made available at runtime to the Python callables used in the application. By default a Topology will automatically discover which packages and modules are required to be copied, this field may be used to add additional packages that were not automatically discovered. See also add_pip_package(). Package names in include_packages take precedence over package names in exclude_packages.

	Type

	set[str]

	
exclude_packages

	Python top-level package names to be excluded from the built application. Excluding a top-level packages excludes all sub-modules at any level in the package, e.g. sound excludes sound.effects.echo. Only the top-level package can be defined, e.g. sound rather than sound.filters. Behavior when adding a module within a package is undefined. When compiling the application using Anaconda this set is pre-loaded with Python packages from the Anaconda pre-loaded set.

	Type

	set[str]

	
type_checking

	Set to false to disable type checking, defaults to True.

	Type

	bool

	
name_to_runtime_id

	Optional callable that returns a runtime identifier for a name. Used to override the default mapping of a name into a runtime identifer. It will be called with name and returns a valid SPL identifier or None. If None is returned then the default mapping for name is used. Defaults to None indicating the default mapping is used. See Stream.runtime_id.

All declared streams in a Topology are available through their name
using topology[name]. The stream’s name is defined by Stream.name() and will differ from the name parameter passed when creating the stream if the application uses duplicate names.

Changed in version 1.11: Declared streams available through topology[name].

	
add_file_dependency(path, location)

	Add a file or directory dependency into an Streams application bundle.

Ensures that the file or directory at path on the local system
will be available at runtime.

The file will be copied and made available relative to the
application directory. Location determines where the file
is relative to the application directory. Two values for
location are supported etc and opt.
The runtime path relative to application directory is returned.

The copy is made during the submit call thus the contents of
the file or directory must remain availble until submit returns.

For example calling
add_file_dependency('/tmp/conf.properties', 'etc')
will result in contents of the local file conf.properties
being available at runtime at the path application directory/etc/conf.properties. This call returns etc/conf.properties.

Python callables can determine the application directory at
runtime with get_application_directory().
For example the path above at runtime is
os.path.join(streamsx.ec.get_application_directory(), 'etc', 'conf.properties')

	Parameters

	
	path (str) – Path of the file on the local system.

	location (str) – Location of the file in the bundle relative to the application directory.

	Returns

	Path relative to application directory that can be joined at runtime with get_application_directory.

	Return type

	str

New in version 1.7.

	
add_pip_package(requirement, name=None)

	Add a Python package dependency for this topology.

If the package defined by the requirement specifier
is not pre-installed on the build system then the
package is installed using pip and becomes part
of the Streams application bundle (sab file).
The package is expected to be available from pypi.org.

If the package is already installed on the build system
then it is not added into the sab file.
The assumption is that the runtime hosts for a Streams
instance have the same Python packages installed as the
build machines. This is always true for IBM Cloud
Pak for Data and the Streaming Analytics service on IBM Cloud.

The project name extracted from the requirement
specifier is added to exclude_packages
to avoid the package being added by the dependency
resolver. Thus the package should be added before
it is used in any stream transformation.

When an application is run with trace level info
the available Python packages on the running system
are listed to application trace. This includes
any packages added by this method.

Example:

topo = Topology()
Add dependency on pint package
and astral at version 0.8.1
topo.add_pip_package('pint')
topo.add_pip_package('astral==0.8.1')

Example for packages not provided on pypi.org:

topo = Topology()
Add dependency on package using whl file
topo.add_pip_package(requirement='https://github.com/myrepo/raw/mydir/mypkg-1.0-py3-none-any.whl', name='mypkg')

	Parameters

	
	requirement (str) – Package requirements specifier.

	name (str) – Name added to exclude_packages. Set this argument when adding URLs only.

Warning

Only supported when using the build service with
a Streams instance in Cloud Pak for Data
or Streaming Analytics service on IBM Cloud.

Note

Installing packages through pip is preferred to
the automatic dependency checking performed on local
modules. This is because pip will perform a full
install of the package including any dependent packages
and additional files, such as shared libraries, that
might be missed by dependency discovery.

New in version 1.9.

	
property checkpoint_period

	Enable checkpointing for the topology, and define the checkpoint
period.

When checkpointing is enabled, the state of all stateful operators
is saved periodically. If the operator restarts, its state is
restored from the most recent checkpoint.

The checkpoint period is the frequency at which checkpoints will
be taken. It can either be a timedelta value
or a floating point value in seconds. It must be at 0.001
seconds or greater.

A stateful operator is an operator whose callable is an instance of a
Python callable class.

Examples:

Create a topology that will checkpoint every thirty seconds
topo = Topology()
topo.checkpoint_period = 30.0

Create a topology that will checkpoint every two minutes
topo = Topology()
topo.checkpoint_period = datetime.timedelta(minutes=2)

New in version 1.11.

	
create_submission_parameter(name, default=None, type_=None)

	Create a submission parameter.

A submission parameter is a handle for a value that
is not defined until topology submission time. Submission
parameters enable the creation of reusable topology bundles.

A submission parameter has a name. The name must be unique
within the topology.

The returned parameter is a callable.
Prior to submitting the topology, while constructing the topology,
invoking it returns None.

After the topology is submitted, invoking the parameter
within the executing topology returns the actual submission time value
(or the default value if it was not set at submission time).

Submission parameters may be used within functional logic. e.g.:

threshold = topology.create_submission_parameter('threshold', 100);

s is some stream of integers
s = ...
s = s.filter(lambda v : v > threshold())

Note

The parameter (value returned from this method) is only
supported within a lambda expression or a callable
that is not a function.

The default type of a submission parameter’s value is a str.
When a default is specified
the type of the value matches the type of the default.

If default is not set, then the type can be set with type_.

The types supported are str, int, float and bool.

Topology submission behavior when a submission parameter
lacking a default value is created and a value is not provided at
submission time is defined by the underlying topology execution runtime.

	Submission fails for contexts DISTRIBUTED, STANDALONE, and STREAMING_ANALYTICS_SERVICE.

	Parameters

	
	name (str) – Name for submission parameter.

	default – Default parameter when submission parameter is not set.

	type_ – Type of parameter value when default is not set. Supported values are str, int, float and bool.

New in version 1.9.

	
property name

	Name of the topology.

	Returns

	Name of the topology.

	Return type

	str

	
property namespace

	Namespace of the topology.

	Returns

	Namespace of the topology.

	Return type

	str

	
source(func, name=None)

	Declare a source stream that introduces tuples into the application.

Typically used to create a stream of tuple from an external source,
such as a sensor or reading from an external system.

Tuples are obtained from an iterator obtained from the passed iterable
or callable that returns an iterable.

Each tuple that is not None from the iterator is present on the returned stream.

Each tuple is a Python object and must be picklable to allow execution of the application
to be distributed across available resources in the Streams instance.

If the iterator’s __iter__ or __next__ block then shutdown,
checkpointing or consistent region processing may be delayed.
Having __next__ return None (no available tuples) or tuples
to submit will allow such processing to proceed.

A shutdown threading.Event is available through
streamsx.ec.shutdown() which becomes set when a shutdown
of the processing element has been requested. This event my be waited
on to perform a sleep that will terminate upon shutdown.

	Parameters

	
	func (callable) – An iterable or a zero-argument callable that returns an iterable of tuples.

	name (str) – Name of the stream, defaults to a generated name.

Exceptions raised by func or its iterator will cause
its processing element will terminate.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method.

Suppressing an exception raised by func.__iter__ causes the
source to be empty, no tuples are submitted to the stream.

Suppressing an exception raised by __next__ on the iterator
results in no tuples being submitted for that call to __next__.
Processing continues with calls to __next__ to fetch subsequent tuples.

	Returns

	A stream whose tuples are the result of the iterable obtained from func.

	Return type

	Stream

Type hints

Type hints on func define the schema of the returned stream,
defaulting to Python
if no type hints are present.

For example s_sensor has a type hint that
defines it as an iterable of SensorReading instances (typed named tuples).
Thus readings has a structured schema matching SensorReading

def s_sensor() -> typing.Iterable[SensorReading] :
 ...

topo = Topology()
readings = topo.source(s_sensor)

Simple examples

Finite constant source stream containing two tuples
Hello and World:

topo = Topology()
hw = topo.source(['Hello', 'World'])

Use of builtin range to produce a finite source stream
containing 100 int tuples from 0 to 99:

topo = Topology()
hw = topo.source(range(100))

Use of itertools.count to produce an infinite stream of int tuples:

import itertools
topo = Topology()
hw = topo.source(lambda : itertools.count())

Use of itertools to produce an infinite stream of tuples
with a constant value and a sequence number:

import itertools
topo = Topology()
hw = topo.source(lambda : zip(itertools.repeat(), itertools.count()))

External system examples

Typically sources pull data in from external systems, such as files,
REST apis, databases, message systems etc. Such a source will typically
be implemented as class that when called returns an iterable.

To allow checkpointing of state standard methods __enter__
and __exit__ are implemented to allow creation of runtime
objects that cannot be persisted, for example a file handle.

At checkpoint time state is preserved through standard pickling
using __getstate__ and (optionally) __setstate__.

Stateless source that polls a REST API every ten seconds to
get a JSON object (dict) with current time details:

import requests
import time

class RestJsonReader(object):
 def __init__(self, url, period):
 self.url = url
 self.period = period
 self.session = None

 def __enter__(self):
 self.session = requests.Session()
 self.session.headers.update({'Accept': 'application/json'})

 def __exit__(self, exc_type, exc_value, traceback):
 if self.session:
 self.session.close()
 self.session = None

 def __call__(self):
 return self

 def __iter__(self):
 return self

 def __next__(self):
 time.sleep(self.period)
 return self.session.get(self.url).json()

 def __getstate__(self):
 # Remove the session from the persisted state
 return {'url':self.url, 'period':self.period}

def main():
 utc_now = 'http://worldclockapi.com/api/json/utc/now'
 topo = Topology()
 times = topo.source(RestJsonReader(10, utc_now))

Warning

Source functions that use generators are not supported
when checkpointing or within a consistent region. This
is because generators cannot be pickled (even when using dill).

Changed in version 1.14: Type hints are used to define the returned stream schema.

	
property streams

	Dict of all streams in the topology.

Key is the name of the stream, value is the corresponding Stream instance.

The returned value is a shallow copy of current streams
in this topology. This allows callers to iterate over the copy
and perform operators that would add streams.

Note

Includes all streams created by composites and any internal streams created by topology.

New in version 1.14.

	
subscribe(topic, schema=<CommonSchema.Python: <streamsx.topology.schema.StreamSchema object>>, name=None, connect=None, buffer_capacity=None, buffer_full_policy=None)

	Subscribe to a topic published by other Streams applications.
A Streams application may publish a stream to allow other
Streams applications to subscribe to it. A subscriber matches a
publisher if the topic and schema match.

By default a stream is subscribed as Python objects
which connects to streams published to topic by Python Streams applications.

Structured schemas are subscribed to using an instance of
StreamSchema. A Streams application publishing
structured schema streams may have been implemented in any
programming language supported by Streams.

JSON streams are subscribed to using schema Json.
Each tuple on the returned stream will be a Python dictionary
object created by json.loads(tuple).
A Streams application publishing JSON streams may have been implemented in any programming language
supported by Streams.

String streams are subscribed to using schema String.
Each tuple on the returned stream will be a Python string object.
A Streams application publishing string streams may have been implemented in any programming language
supported by Streams.

Subscribers can ensure they do not slow down matching publishers
by using a buffered connection with a buffer full policy
that drops tuples.

	Parameters

	
	topic (str) – Topic to subscribe to.

	schema (StreamSchema) – schema to subscribe to.

	name (str) – Name of the subscribed stream, defaults to a generated name.

	connect (SubscribeConnection) – How subscriber will be connected to matching publishers. Defaults to Direct connection.

	buffer_capacity (int) – Buffer capacity in tuples when connect is set to Buffered. Defaults to 1000 when connect is Buffered. Ignored when connect is None or Direct.

	buffer_full_policy (CongestionPolicy) – Policy when a pulished tuple arrives and the subscriber’s buffer is full. Defaults to Wait when connect is Buffered. Ignored when connect is None or Direct.

	Returns

	A stream whose tuples have been published to the topic by other Streams applications.

	Return type

	Stream

Changed in version 1.9: connect, buffer_capacity and buffer_full_policy parameters added.

	
class streamsx.topology.topology.Stream(topology, oport, other=None)

	Bases: streamsx._streams._placement._Placement, object

The Stream class is the primary abstraction within a streaming application. It represents a potentially infinite
series of tuples which can be operated upon to produce another stream, as in the case of map(), or
terminate a stream, as in the case of for_each().

	
aliased_as(name)

	Create an alias of this stream.

Returns an alias of this stream with name name.
When invocation of an SPL operator requires an
Expression against
an input port this can be used to ensure expression
matches the input port alias regardless of the name
of the actual stream.

Example use where the filter expression for a Filter SPL operator
uses IN to access input tuple attribute seq:

s = ...
s = s.aliased_as('IN')

params = {'filter': op.Expression.expression('IN.seq % 4ul == 0ul')}
f = op.Map('spl.relational::Filter', stream, params = params)

	Parameters

	name (str) – Name for returned stream.

	Returns

	Alias of this stream with name equal to name.

	Return type

	Stream

New in version 1.9.

	
as_json(force_object=True, name=None)

	Declares a stream converting each tuple on this stream into
a JSON value.

The stream is typed as a JSON stream.

Each tuple must be supported by JSONEncoder.

If force_object is True then each tuple that not a dict
will be converted to a JSON object with a single key payload
containing the tuple. Thus each object on the stream will
be a JSON object.

If force_object is False then each tuple is converted to
a JSON value directly using json package.

If this stream is already typed as a JSON stream then it will
be returned (with no additional processing against it and
force_object and name are ignored).

	Parameters

	
	force_object (bool) – Force conversion of non dicts to JSON objects.

	name (str) – Name of the resulting stream.
When None defaults to a generated name.

New in version 1.6.1.

	Returns

	Stream containing the JSON representations of tuples on this stream.

	Return type

	Stream

	
as_string(name=None)

	Declares a stream converting each tuple on this stream
into a string using str(tuple).

The stream is typed as a string stream.

If this stream is already typed as a string stream then it will
be returned (with no additional processing against it and name
is ignored).

	Parameters

	name (str) – Name of the resulting stream.
When None defaults to a generated name.

New in version 1.6.

New in version 1.6.1: name parameter added.

	Returns

	Stream containing the string representations of tuples on this stream.

	Return type

	Stream

	
autonomous()

	Starts an autonomous region for downstream processing.
By default IBM Streams processing is executed in an autonomous region
where any checkpointing of operator state is autonomous (independent)
of other operators.

This method may be used to end a consistent region by starting an
autonomous region. This may be called even if this stream is in
an autonomous region.

Autonomous is not applicable when a topology is submitted
to a STANDALONE contexts and will be ignored.

New in version 1.6.

	Returns

	Stream whose subsequent downstream processing is in an autonomous region.

	Return type

	Stream

	
batch(size)

	Declares a tumbling window to support batch processing
against this stream.

The number of tuples in the batch is defined by size.

If size is an int then it is the count of tuples in the batch.
For example, with size=10 each batch will nominally
contain ten tuples. Thus processing against the returned
Window, such as aggregate() will be
executed every ten tuples against the last ten tuples on the stream.
For example the first three aggregations would be against
the first ten tuples on the stream, then the next ten tuples
and then the third ten tuples, etc.

If size is an datetime.timedelta then it is the duration
of the batch using wallclock time.
With a timedelta representing five minutes
then the window contains any tuples that arrived in the last
five minutes. Thus processing against the returned Window,
such as aggregate() will be executed every five minutes tuples
against the batch of tuples arriving in the last five minutes
on the stream. For example the first three aggregations would be
against any tuples on the stream in the first five minutes,
then the next five minutes and then minutes ten to fifteen.
A batch can contain no tuples if no tuples arrived on the stream
in the defined duration.

Each tuple on the stream appears only in a single batch.

The number of tuples seen by processing against the
returned window may be less than size (count or time based)
when:

	the stream is finite, the final batch may contain less tuples than the defined size,

	the stream is in a consistent region, drain processing will complete the current batch without waiting for it to batch to reach its nominal size.

Examples:

Create batches against stream s of 100 tuples each
w = s.batch(size=100)

Create batches against stream s every five minutes
w = s.batch(size=datetime.timedelta(minutes=5))

	Parameters

	size – The size of each batch, either an int to define the
number of tuples or datetime.timedelta to define the
duration of the batch.

	Returns

	Window allowing batch processing on this stream.

	Return type

	Window

New in version 1.11.

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
end_low_latency()

	Returns a Stream that is no longer guaranteed to run in the same process
as the calling stream.

	Returns

	Stream

	
end_parallel()

	Ends a parallel region by merging the channels into a single stream.

	Returns

	Stream for which subsequent transformations are no longer parallelized.

	Return type

	Stream

See also

set_parallel(), parallel()

	
filter(func, non_matching=False, name=None)

	Filters tuples from this stream using the supplied callable func.

For each stream tuple t on the stream func(t) is called, if the return evaluates to True the
tuple will be present on the returned stream, otherwise the tuple is filtered out.

	Parameters

	
	func – Filter callable that takes a single parameter for the stream tuple.

	non_matching (bool) – Non-matching tuples are sent to a second optional output stream

	name (str) – Name of the stream, defaults to a generated name.

If invoking func for a stream tuple raises an exception
then its processing element will terminate. By default the processing
element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method. When an
exception is suppressed no tuple is submitted to the filtered
stream corresponding to the input tuple that caused the exception.

Example with matching and non matching streams:

topo = Topology()
s = topo.source(['Hello', 'World'])
matches, non_matches = s.filter((lambda t : "Wor" in t), non_matching=True)

	Returns

	A Stream containing tuples that have not been filtered out. The schema of the returned stream is the same as this stream’s schema. Optional second stream is returned for non matching tuples, if parameter non_matching is set to True.

	Return type

	Stream

Type hints

The argument type hint on func is used (if present) to verify
at topology declaration time that it is compatible with the
type of tuples on this stream.

	
flat_map(func=None, name=None)

	Maps and flatterns each tuple from this stream into 0 or more tuples.

For each tuple on this stream func(tuple) is called.
If the result is not None then the the result is iterated over
with each value from the iterator that is not None will be submitted
to the return stream.

If the result is None or an empty iterable then no tuples are submitted to
the returned stream.

	Parameters

	
	func – A callable that takes a single parameter for the tuple.
If not supplied then a function equivalent to lambda tuple_ : tuple_ is used.
This is suitable when each tuple on this stream is an iterable to be flattened.

	name (str) – Name of the flattened stream, defaults to a generated name.

If invoking func for a tuple on the stream raises an exception
then its processing element will terminate. By default the processing
element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method. When an
exception is suppressed no tuples are submitted to the flattened
and mapped stream corresponding to the input tuple
that caused the exception.

Example: For a list of dict the flat_map emits n tuples for each input tuple received, with n the number of elements in the list:

from typing import Iterable, List, NamedTuple

class SampleSchema(NamedTuple):
 id: str
 flag: bool

def flatten_dict(tpl) -> Iterable[SampleSchema]:
 return tpl

list_stream is a stream of list from dict as Python object, for example [{'id': '0', 'flag':True}]
sample_stream = list_stream.flat_map(flatten_dict) # sample_stream is a named tuple stream of SampleSchema

	Returns

	A Stream containing flattened and mapped tuples.

	Return type

	Stream

	Raises

	TypeError – if func does not return an iterator nor None

Changed in version 1.11: func is optional.

	
for_each(func, name=None)

	Sends information as a stream to an external system.

The transformation defined by func is a callable
or a composite transformation.

Callable transformation

If func is callable then for each tuple t on this
stream func(t) is called.

If invoking func for a tuple on the stream raises an exception
then its processing element will terminate. By default the processing
element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method. When an
exception is suppressed no further processing occurs for the
input tuple that caused the exception.

Composite transformation

A composite transformation is an instance of ForEach. Composites allow the application developer to use
the standard functional style of the topology api while allowing
allowing expansion of a for_each transform to multiple basic
transformations.

	Parameters

	
	func – A callable that takes a single parameter for the tuple and returns None.

	name (str) – Name of the stream, defaults to a generated name.

	Returns

	Stream termination.

	Return type

	streamsx.topology.topology.Sink

Type hints

The argument type hint on func is used (if present) to verify
at topology declaration time that it is compatible with the
type of tuples on this stream.

Changed in version 1.7: Now returns a Sink instance.

Changed in version 1.14: Support for type hints and composite transformations.

	
isolate()

	Guarantees that the upstream operation will run in a separate processing element from the downstream operation

	Returns

	Stream whose subsequent immediate processing will occur in a separate processing element.

	Return type

	Stream

	
last(size=1)

	Declares a slding window containing most recent tuples
on this stream.

The number of tuples maintained in the window is defined by size.

If size is an int then it is the count of tuples in the window.
For example, with size=10 the window always contains the
last (most recent) ten tuples.

If size is an datetime.timedelta then it is the duration
of the window. With a timedelta representing five minutes
then the window contains any tuples that arrived in the last
five minutes.

	Parameters

	size – The size of the window, either an int to define the
number of tuples or datetime.timedelta to define the
duration of the window.

Examples:

Create a window against stream s of the last 100 tuples
w = s.last(size=100)

Create a window against stream s of tuples
arrived on the stream in the last five minutes
w = s.last(size=datetime.timedelta(minutes=5))

	Returns

	Window of the last (most recent) tuples on this stream.

	Return type

	Window

	
low_latency()

	The function is guaranteed to run in the same process as the
upstream Stream function. All streams that are created from the returned stream
are also guaranteed to run in the same process until end_low_latency()
is called.

	Returns

	Stream

	
map(func=None, name=None, schema=None)

	Maps each tuple from this stream into 0 or 1 stream tuples.

The transformation defined by func is a callable
or a composite transformation.

Callable transformation

For each tuple on this stream result = func(tuple) is called.
If result is not None then the result will be submitted
as a tuple on the returned stream. If result is None then
no tuple submission will occur.

By default the submitted tuple is result without modification
resulting in a stream of picklable Python objects. Setting the
schema parameter changes the type of the stream and
modifies each result before submission.

	object or Python - The default: result is submitted.

	str type or String - A stream of strings: str(result) is submitted.

	json or Json - A stream of JSON objects: result must be convertable to a JSON object using json package.

	StreamSchema - A structured stream. result must be a dict or (Python) tuple. When a dict is returned the outgoing stream tuple attributes are set by name, when a tuple is returned stream tuple attributes are set by position.

	string value - Equivalent to passing StreamSchema(schema)

Composite transformation

A composite transformation is an instance of Map. Composites allow the application developer to use
the standard functional style of the topology api while allowing
allowing expansion of a map transform to multiple basic
transformations.

	Parameters

	
	func – A callable that takes a single parameter for the tuple.
If not supplied then a function equivalent to lambda tuple_ : tuple_ is used.

	name (str) – Name of the mapped stream, defaults to a generated name.

	schema (StreamSchema|CommonSchema|str) – Schema of the resulting stream.

If invoking func for a tuple on the stream raises an exception
then its processing element will terminate. By default the processing
element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method. When an
exception is suppressed no tuple is submitted to the mapped
stream corresponding to the input tuple that caused the exception.

	Returns

	A stream containing tuples mapped by func.

	Return type

	Stream

Type hints

If schema is not set then the return type hint on func define the
schema of the returned stream, defaulting to
Python if no
type hints are present.

For example reading_from_json has a type hint that
defines it as returning SensorReading instances (typed named tuples).
Thus readings has a structured schema matching SensorReading

def reading_from_json(value:dict) -> SensorReading:
 return SensorReading(value['id'], value['timestamp'], value['reading'])

topo = Topology()
json_readings = topo.source(HttpReadings()).as_json()
readings = json_readings.map(reading_from_json)

The argument type hint on func is used (if present) to verify
at topology declaration time that it is compatible with the
type of tuples on this stream.

New in version 1.7: schema argument added to allow conversion to
a structured stream.

New in version 1.8: Support for submitting dict objects as stream tuples to a structured stream (in addition to existing support for tuple objects).

Changed in version 1.11: func is optional.

	
property name

	Unique name of the stream.

When declaring a stream a name parameter can be provided.
If the supplied name is unique within its topology then
it will be used as-is, otherwise a variant will be provided
that is unique within the topology.

If a name parameter was not provided when declaring a stream
then the stream is assigned a unique generated name.

	Returns

	Name of the stream.

	Return type

	str

See also

aliased_as()

Warning

If the name is not a valid SPL identifier or longer than
80 characters then the name will be
converted to a valid SPL identifier at compile and runtime.
This identifier will be the name used in the REST api and log/trace.

Visualizations of the runtime graph uses name rather
than the converted identifier.

A valid SPL identifier consists only of
characters A-Z, a-z, 0-9, _ and
must not start with a number or be an SPL keyword.

See runtime_id.

	
parallel(width, routing=<Routing.ROUND_ROBIN: 1>, func=None, keys=None, name=None)

	Split stream into channels and start a parallel region.

Returns a new stream that will contain the contents of
this stream with tuples distributed across its channels.

The returned stream starts a parallel region where all
downstream transforms are replicated across width channels.
A parallel region is terminated by end_parallel()
or for_each().

Any transform (such as map(), filter(), etc.) in
a parallel region has a copy of its callable executing
independently in parallel. Channels remain independent
of other channels until the region is terminated.

For example with this topology fragment a parallel region
of width 3 is created:

s = ...
p = s.parallel(3)
p = p.filter(F()).map(M())
e = p.end_parallel()
e.for_each(E())

Tuples from p (parallelized s) are distributed
across three channels, 0, 1 & 2
and are independently processed by three instances of F and M.
The tuples that pass the filter F in channel 0 are then mapped
by the instance of M in channel 0, and so on for channels 1 and 2.

The channels are combined by end_parallel and so a single instance
of E processes all the tuples from channels 0, 1 & 2.

This stream instance (the original) is outside of the parallel region
and so any downstream transforms are executed normally.
Adding this map transform would result in tuples
on s being processed by a single instance of N:

n = s.map(N())

The number of channels is set by width which may be an int greater
than zero or a submission parameter created by
Topology.create_submission_parameter().

With IBM Streams 4.3 or later the number of channels can be
dynamically changed at runtime.

Tuples are routed to channels based upon routing, see Routing.

A parallel region can have multiple termination points, for
example when a stream within the stream has multiple transforms
against it:

s = ...
p = s.parallel(3)
m1p = p.map(M1())
m2p = p.map(M2())
p.for_each(E())

m1 = m1p.end_parallel()
m2 = m2p.end_parallel()

Parallel regions can be nested, for example:

s = ...
m = s.parallel(2).map(MO()).parallel(3).map(MI()).end_parallel().end_parallel()

In this case there will be two instances of MO (the outer region) and six (2x3) instances of MI (the inner region).

Streams created by source() or
subscribe() are placed in a parallel region
by set_parallel().

	Parameters

	
	width (int) – Degree of parallelism.

	routing (Routing) – Denotes what type of tuple routing to use.

	func – Optional function called when Routing.HASH_PARTITIONED routing is specified.
The function provides an integer value to be used as the hash that determines
the tuple channel routing.

	keys ([str]) – Optional list of keys required when Routing.KEY_PARTITIONED routing is specified. Each key represents a tuple attribute.

	name (str) – The name to display for the parallel region.

	Returns

	A stream for which subsequent transformations will be executed in parallel.

	Return type

	Stream

See also

set_parallel(), end_parallel(), split()

	
print(tag=None, name=None)

	Prints each tuple to stdout flushing after each tuple.

If tag is not None then each tuple has “tag: ” prepended
to it before printing.

	Parameters

	
	tag – A tag to prepend to each tuple.

	name (str) – Name of the resulting stream.
When None defaults to a generated name.

	Returns

	Stream termination.

	Return type

	streamsx.topology.topology.Sink

New in version 1.6.1: tag, name parameters.

Changed in version 1.7: Now returns a Sink instance.

	
publish(topic, schema=None, name=None)

	Publish this stream on a topic for other Streams applications to subscribe to.
A Streams application may publish a stream to allow other
Streams applications to subscribe to it. A subscriber
matches a publisher if the topic and schema match.

By default a stream is published using its schema.

A stream of Python objects can be subscribed to by other Streams Python applications.

If a stream is published setting schema to
json or Json
then it is published as a stream of JSON objects.
Other Streams applications may subscribe to it regardless
of their implementation language.

If a stream is published setting schema to
str or String
then it is published as strings.
Other Streams applications may subscribe to it regardless
of their implementation language.

Supported values of schema are only
json, Json
and
str, String.

	Parameters

	
	topic (str) – Topic to publish this stream to.

	schema – Schema to publish. Defaults to the schema of this stream.

	name (str) – Name of the publish operator, defaults to a generated name.

	Returns

	Stream termination.

	Return type

	streamsx.topology.topology.Sink

New in version 1.6.1: name parameter.

Changed in version 1.7: Now returns a Sink instance.

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

	
property runtime_id

	Return runtime identifier.

If name is not a valid SPL identifier then the
runtime identifier will be valid SPL identifier that represents name.
Otherwise name is returned.

The runtime identifier is how the underlying SPL operator
or output port is named in the REST api and trace/log files.

If a topology unique name is supplied when creating a stream then runtime
identifier is fixed regardless of other changes in the topology.

The algorithm to determine the runtime name (for clients that
cannot call this method, for example, remote REST clients gathering
metrics) is as follows.

If the length of name is less than or equal
to 80 and name is an SPL identifier then name is used.
An SPL identifier consists only of the characters A-Z, a-z
0-9 and _, must not start with 0-9 and must not be
an SPL keyword.

Otherwise the identifier has the form prefix_suffix.

prefix is the kind of the SPL operator stripped of
its namespace and ::. For all functional methods
the operator kind is the method name with the first
character upper-cased.

For example, Filter for filter(), Beacon for
spl::utility::Beacon.

suffix is a hashed version of name, an MD5 digest
d is calculated from the UTf-8 encoding of name.
d is shortened by having its first eight bytes xor folded
with its last eight bytes. d is then base64 encoded
to produce a string. Padding = and + and / characters
are removed from the string.

For example, s.filter(lambda x : True, name='你好')
results in a runtime identifier of Filter_oGwCfhWRg4.

The default mapping can be overridden by setting Topology.name_to_runtime_id to a callable that returns a valid identifier for its single argument. The returned identifier should be unique with the topology. For example usinig a pre-populated dict as the mapper:

topo = Topology()
names = {'你好', 'Buses', '培养':'Trains'}
topo.name_to_runtime_id = names.get

buses = toopo.source(..., name='你好')
trains = topo.source(..., name='培养'}

// buses.runtime_id will be Buses
// trains.runtime_id will be Trains

	Returns

	Runtime identifier of the stream.

	Return type

	str

New in version 1.14.

	
set_consistent(consistent_config)

	Indicates that the stream is the start of a consistent region.

	Parameters

	consistent_config (consistent.ConsistentRegionConfig) – the configuration of the consistent region.

	Returns

	Returns this stream.

	Return type

	Stream

New in version 1.11.

	
set_parallel(width, name=None)

	Set this source stream to be split into multiple channels
as the start of a parallel region.

Calling set_parallel on a stream created by
source() results in the stream
having width channels, each created by its own instance
of the callable:

s = topo.source(S())
s.set_parallel(3)
f = s.filter(F())
e = f.end_parallel()

Each channel has independent instances of S and F. Tuples
created by the instance of S in channel 0 are passed to the
instance of F in channel 0, and so on for channels 1 and 2.

Callable transforms instances within the channel can use
the runtime functions
channel(),
local_channel(),
max_channels() &
local_max_channels()
to adapt to being invoked in parallel. For example a
source callable can use its channel number to determine
which partition to read from in a partitioned external system.

Calling set_parallel on a stream created by
subscribe() results in the stream
having width channels. Subscribe ensures that the
stream will contain all published tuples matching the
topic subscription and type. A published tuple will appear
on one of the channels though the specific channel is not known
in advance.

A parallel region is terminated by end_parallel()
or for_each().

The number of channels is set by width which may be an int greater
than zero or a submission parameter created by
Topology.create_submission_parameter().

With IBM Streams 4.3 or later the number of channels can be
dynamically changed at runtime.

Parallel regions are started on non-source streams using
parallel().

	Parameters

	
	width – The degree of parallelism for the parallel region.

	name (str) – Name of the parallel region. Defaults to the name of this stream.

	Returns

	Returns this stream.

	Return type

	Stream

See also

parallel(), end_parallel()

New in version 1.9.

Changed in version 1.11: name parameter added.

	
split(into, func, names=None, name=None)

	Splits tuples from this stream into multiple independent streams
using the supplied callable func.

For each tuple on the stream int(func(tuple)) is called, if the
return is zero or positive then the (unmodified) tuple will be
present on one, and only one, of the output streams.
The specific stream will
be at index int(func(tuple)) % N in the returned list,
where N is the number of output
streams. If the return is negative then the tuple is dropped.

split is used to declare disparate transforms on each
split stream. This differs to parallel() where
each channel has the same logic transforms.

	Parameters

	
	into (int) – Number of streams the input is split into, must be greater than zero.

	func – Split callable that takes a single parameter for the tuple.

	names (list[str]) – Names of the returned streams, in order. If not supplied or a stream doesn’t have an entry in names then a generated name is used. Entries are used to generated the field names of the returned named tuple.

	name (str) – Name of the split transform, defaults to a generated name.

If invoking func for a tuple on the stream raises an exception
then its processing element will terminate. By default the processing
element will automatically restart though tuples may be lost.

If func is a callable object then it may suppress exceptions
by return a true value from its __exit__ method. When an
exception is suppressed no tuple is submitted to the filtered
stream corresponding to the input tuple that caused the exception.

	Returns

	Named tuple of streams this stream is split across. All returned streams have the same schema as this stream.

	Return type

	namedtuple

Type hints

The argument type hint on func is used (if present) to verify
at topology declaration time that it is compatible with the
type of tuples on this stream.

Examples

Example of splitting a stream based upon message severity, dropping
any messages with unknown severity, and then performing different
transforms for each severity:

msgs = topo.source(ReadMessages())
SEVS = {'H':0, 'M':1, 'L':2}
severities = msg.split(3, lambda SEVS.get(msg.get('SEV'), -1),
 names=['high','medium','low'], name='SeveritySplit')

high_severity = severities.high
high_severity.for_each(SendAlert())

medium_severity = severities.medium
medium_severity.for_each(LogMessage())

low_severity = severities.low
low_severity.for_each(Archive())

See also

parallel()

New in version 1.13.

	
union(streamSet)

	Creates a stream that is a union of this stream and other streams

	Parameters

	streamSet – a set of Stream objects to merge with this stream

	Returns

	

	Return type

	Stream

	
view(buffer_time=10.0, sample_size=10000, name=None, description=None, start=False)

	Defines a view on a stream.

A view is a continually updated sampled buffer of a streams’s tuples.
Views allow visibility into a stream from external clients such
as Jupyter Notebooks, the Streams console,
Microsoft Excel [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.excel.doc/doc/excel_overview.html] or REST clients.

The view created by this method can be used by external clients
and through the returned View object after the topology is submitted. For example a Jupyter Notebook can
declare and submit an application with views, and then
use the resultant View objects to visualize live data within the streams.

When the stream contains Python objects then they are converted
to JSON.

	Parameters

	
	buffer_time – Specifies the buffer size to use measured in seconds.

	sample_size – Specifies the number of tuples to sample per second.

	name (str) – Name of the view. Name must be unique within the topology. Defaults to a generated name.

	description – Description of the view.

	start (bool) – Start buffering data when the job is submitted.
If False then the view starts buffering data when the first
remote client accesses it to retrieve data.

	Returns

	View object which can be used to access the data when the
topology is submitted.

	Return type

	streamsx.topology.topology.View

Note

Views are only supported when submitting to distributed
contexts including Streaming Analytics service.

	
class streamsx.topology.topology.View(name)

	Bases: object

The View class provides access to a continuously updated sampling of data items on a Stream after submission.
A view object is produced by view(), and will access data items from the stream on which it is invoked.

For example, a View object could be created and used as follows:

>>> topology = Topology()
>>> rands = topology.source(lambda: iter(random.random, None))
>>> view = rands.view()
>>> submit(ContextTypes.DISTRIBUTED, topology)
>>> queue = view.start_data_fetch()
>>> for val in iter(queue.get, 60):
... print(val)
...
0.6527
0.1963
0.0512

	
display(duration=None, period=2)

	Display a view within a Jupyter or IPython notebook.

Provides an easy mechanism to visualize data on a stream
using a view.

Tuples are fetched from the view and displayed in a table
within the notebook cell using a pandas.DataFrame.
The table is continually updated with the latest tuples from the view.

This method calls start_data_fetch() and will call
stop_data_fetch() when completed if duration is set.

	Parameters

	
	duration (float) – Number of seconds to fetch and display tuples. If None then the display will be updated until stop_data_fetch() is called.

	period (float) – Maximum update period.

Note

A view is a sampling of data on a stream so tuples that
are on the stream may not appear in the view.

Note

Python modules ipywidgets and pandas must be installed
in the notebook environment.

Warning

Behavior when called outside a notebook is undefined.

New in version 1.12.

	
fetch_tuples(max_tuples=20, timeout=None)

	Fetch a number of tuples from this view.

Fetching of data must have been started with
start_data_fetch() before calling this method.

If timeout is None then the returned list will
contain max_tuples tuples. Otherwise if the timeout is reached
the list may contain less than max_tuples tuples.

	Parameters

	
	max_tuples (int) – Maximum number of tuples to fetch.

	timeout (float) – Maximum time to wait for max_tuples tuples.

	Returns

	List of fetched tuples.

	Return type

	list

New in version 1.12.

	
start_data_fetch()

	Starts a background thread which begins accessing data from the remote Stream.
The data items are placed asynchronously in a queue, which is returned from this method.

	Returns

	A Queue object which is populated with the data items of the stream.

	Return type

	queue.Queue

	
stop_data_fetch()

	Terminates the background thread fetching stream data items.

	
class streamsx.topology.topology.PendingStream(topology)

	Bases: object

Pending stream connection.

A pending stream is an initially disconnected stream. The stream attribute
can be used as an input stream when the required stream is not yet available. Once the required
stream is available the connection is made using complete().

The schema of the pending stream is defined by the stream passed into complete.

A simple example is creating a source stream after the filter that will use it:

Create the pending or placeholder stream
pending_source = PendingStream(topology)

Create a filter against the placeholder stream
f = pending_source.stream.filter(lambda : t : t.startswith("H"))

source = topology.source(['Hello', 'World'])

Now complete the connection
pending_source.complete(source)

Streams allows feedback loops in its flow graphs, where downstream processing can produce a stream that is
fed back into the input port of an upstream operator. Typically, feedback loops are
used to modify the state of upstream transformations, rather than repeat processing of tuples.

A feedback loop can be created by using a PendingStream. The upstream transformation or operator
that will end the feedback loop uses stream as one of its inputs. A processing
pipeline is then created and once the downstream starting point of the feedback loop is available,
it is passed to complete() to create the loop.

	
complete(stream)

	Complete the pending stream.

Any connections made to stream are connected to stream once
this method returns.

	Parameters

	stream (Stream) – Stream that completes the connection.

	
is_complete()

	Has this connection been completed.

	
class streamsx.topology.topology.Window(stream, window_type)

	Bases: object

Declaration of a window of tuples on a Stream.

A Window enables transforms against collection (or window)
of tuples on a stream rather than per-tuple transforms.
Windows are created against a stream using Stream.batch()
or Stream.last().

Supported transforms are:

	aggregate() - Aggregate the window contents into a single tuple.

A window is optionally partitioned to create
independent sub-windows per partition key.

A Window can be also passed as the input of an SPL
operator invocation to indicate the operator’s
input port is windowed.

Example invoking the SPL Aggregate operator with a sliding window of
the last two minutes, triggering every five tuples:

win = s.last(datetime.timedelta(minutes=2)).trigger(5)

agg = op.Map('spl.relational::Aggregate', win,
 schema = 'tuple<uint64 sum, uint64 max>')
agg.sum = agg.output('Sum(val)')
agg.max = agg.output('Max(val)')

	
aggregate(function, name=None)

	Aggregates the contents of the window when the window is
triggered.

Upon a window trigger, the supplied function is passed a list containing
the contents of the window: function(items). The order of the window
items in the list are the order in which they were each received by the
window. If the function’s return value is not None then the result will
be submitted as a tuple on the returned stream. If the return value is
None then no tuple submission will occur.

For example, a window that calculates a moving average of the
last 10 tuples could be written as follows:

win = s.last(10).trigger(1)
moving_averages = win.aggregate(lambda tuples: sum(tuples)/len(tuples))

When the window is partitioned
then each partition is triggered and aggregated using
function independently.

For example, this partitioned window aggregation will independently
call summarize_sensors with ten tuples all having the same id
when triggered. Each partition triggers independently so that
summarize_sensors is invoked for a specific id every time
two tuples with that id have been inserted into the window partition:

win = s.last(10).trigger(2).partition(key='id')
moving_averages = win.aggregate(summarize_sensors)

Example for building a rolling average window aggregation with stream tuples passed as a named tuple:

from streamsx.topology.topology import Topology
from streamsx.topology import context
from streamsx.topology.context import submit, ContextTypes, ConfigParams
import random
import itertools
from typing import Iterable, NamedTuple

class AggregateSchema(NamedTuple):
 count: int = 0
 avg: float = 0.0
 min: int = 0
 max: int = 0

class Average:
 def __call__(self, tuples_in_window) -> AggregateSchema:
 values = [tpl.value for tpl in tuples_in_window]
 mn = min(values)
 mx = max(values)
 num_of_tuples = len(tuples_in_window)
 average = sum(values) / len(tuples_in_window)
 output_event = AggregateSchema(
 count = num_of_tuples,
 avg = average,
 min = mn,
 max = mx
)
 return output_event

class NumbersSchema(NamedTuple):
 value: int = 0

class Numbers(object):
 def __call__(self) -> Iterable[NumbersSchema]:
 for num in itertools.count(1):
 yield {"value": num}

topo = Topology("Rolling Average")
src = topo.source(Numbers())
window = src.last(size=10)
rolling_average = window.aggregate(Average())

Note

If a tumbling (batch()) window’s stream
is finite then a final aggregation is performed if the
window is not empty. Thus function may be passed fewer tuples
for a window sized using a count. For example a stream with 105
tuples and a batch size of 25 tuples will perform four aggregations
with 25 tuples each and a final aggregation of 5 tuples.

	Parameters

	
	function – The function which aggregates the contents of the window

	name (str) – The name of the returned stream. Defaults to a generated name.

	Returns

	A Stream of the returned values of the supplied function.

	Return type

	Stream

Warning

In Python 3.5 or later if the stream being aggregated has a
structured schema that contains a blob type then any blob
value will not be maintained in the window. Instead its
memoryview object will have been released. If the blob
value is required then perform a map() transformation
(without setting schema) copying any required
blob value in the tuple using memoryview.tobytes().

New in version 1.8.

Changed in version 1.11: Support for aggregation of streams with structured schemas.

Changed in version 1.13: Support for partitioned aggregation.

	
partition(key)

	Declare a window with this window’s eviction and trigger policies, and a partition.

In a partitioned window, a subwindow will be created for each distinct
value received for the attribute used for partitioning. Each subwindow
is treated as if it were a separate window, and each subwindow shares
the same trigger and eviction policy.

The key may either be a string containing the name of an attribute,
or a python callable.

The key parameter may be a string only with a structured schema,
and the value of the key parameter must be the name of a single
attribute in the schema.

The key parameter may be a python callable object. If it is, the
callable is evaluated for each tuple, and the return from the callable
determines the partition into which the tuple is placed. The return
value must have a __hash__ method. If checkpointing is enabled,
and the callable object has a state, the state of the callable object
will be saved and restored in checkpoints. However, __enter__ and
__exit__ methods may not be called on the callable object.

	Parameters

	key – The name of the attribute to be used for partitioning, or
the python callable object used for partitioning.

	Returns

	Window that will be triggered.

	Return type

	Window

New in version 1.13.

	
trigger(when=1)

	Declare a window with this window’s size and a trigger policy.

When the window is triggered is defined by when.

If when is an int then the window is triggered every
when tuples. For example, with when=5 the window
will be triggered every five tuples.

If when is an datetime.timedelta then it is the period
of the trigger. With a timedelta representing one minute
then the window is triggered every minute.

By default, when trigger has not been called on a Window
it triggers for every tuple inserted into the window
(equivalent to when=1).

	Parameters

	when – The size of the window, either an int to define the
number of tuples or datetime.timedelta to define the
duration of the window.

	Returns

	Window that will be triggered.

	Return type

	Window

Warning

A trigger is only supported for a sliding window
such as one created by last().

	
class streamsx.topology.topology.Sink(op)

	Bases: streamsx._streams._placement._Placement, object

Termination of a Stream.

A Stream is terminated by processing that typically
sends the tuples to an external system.

Note

A Stream may have multiple terminations.

See also

for_each(), publish(), print()

New in version 1.7.

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

streamsx.topology.context

Context for submission and build of topologies.

Module contents

Functions

	build

	Build a topology to produce a Streams application bundle.

	run

	Run a topology in a distributed Streams instance.

	submit

	Submits a Topology (application) using the specified context type.

Classes

	ConfigParams

	Configuration options which may be used as keys in submit() config parameter.

	ContextTypes

	Submission context types.

	JobConfig

	Job configuration.

	SubmissionResult

	Passed back to the user after a call to submit.

	
class streamsx.topology.context.ContextTypes

	Bases: object

Submission context types.

A Topology is submitted using submit() and a context type.
Submision of a Topology generally builds the application into a Streams application
bundle (sab) file and then submits it for execution in the required context.

The Streams application bundle contains all the artifacts required by an application such
that it can be executed remotely (e.g. on a Streaming Analytics service), including
distributing the execution of the application across multiple resources (hosts).

The context type defines which context is used for submission.

The main context types result in a running application and are:

	STREAMING_ANALYTICS_SERVICE - Application is submitted to a Streaming Analytics service running on IBM Cloud.

	DISTRIBUTED - Application is submitted to an IBM Streams instance.

	STANDALONE - Application is executed as a local process, IBM Streams standalone application. Typically this is used during development or testing.

The BUNDLE context type compiles the application (Topology) to produce a
Streams application bundle (sab file). The bundle is not executed but may subsequently be submitted
to a Streaming Analytics service or an IBM Streams instance. A bundle may be submitted multiple
times to services or instances, each resulting in a unique job (running application).

	
BUILD_ARCHIVE = 'BUILD_ARCHIVE'

	Creates a build archive.

This context type produces the intermediate code archive used for bundle creation.

Note

BUILD_ARCHIVE is typically only used when diagnosing issues with bundle generation.

	
BUNDLE = 'BUNDLE'

	Create a Streams application bundle.

The Topology is compiled to produce Streams application bundle (sab file).

	The resultant application can be submitted to:
	
	Streaming Analytics service using the Streams console or the Streaming Analytics REST api.

	IBM Streams instance using the Streams console, JMX api or command line streamtool submitjob.

	Executed standalone for development or testing.

The bundle must be built on the same operating system version and architecture as the intended running
environment. For Streaming Analytics service this is currently RedHat/CentOS 7 and x86_64 architecture.

IBM Cloud Pak for Data integated configuration

Projects (within cluster)

The Topology is compiled using the Streams build service for
a Streams service instance running in the same Cloud Pak for
Data cluster as the Jupyter notebook or script declaring the application.

The instance is specified in the configuration passed into submit(). The code that selects a service instance by name is:

from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams")

topo = Topology()
...
submit(ContextTypes.BUNDLE, topo, cfg)

The resultant cfg dict may be augmented with other values such as
keys from ConfigParams.

External to cluster or project

The Topology is compiled using the Streams build service for a Streams service instance running in Cloud Pak for Data.

	Environment variables:
	These environment variables define how the application is built and submitted.

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

IBM Cloud Pak for Data standalone configuration

The Topology is compiled using the Streams build service.

	Environment variables:
	These environment variables define how the application is built.

	STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

IBM Streams on-premise 4.2 & 4.3

The Topology is compiled using a local IBM Streams installation.

	Environment variables:
	These environment variables define how the application is built.

	STREAMS_INSTALL - Location of a local IBM Streams installation.

	
DISTRIBUTED = 'DISTRIBUTED'

	Submission to an IBM Streams instance.

IBM Cloud Pak for Data integated configuration

Projects (within cluster)

The Topology is compiled using the Streams build service and submitted
to an Streams service instance running in the same Cloud Pak for
Data cluster as the Jupyter notebook or script declaring the application.

The instance is specified in the configuration passed into submit(). The code that selects a service instance by name is:

from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams")

topo = Topology()
...
submit(ContextTypes.DISTRIBUTED, topo, cfg)

The resultant cfg dict may be augmented with other values such as
a JobConfig or keys from ConfigParams.

External to cluster or project

The Topology is compiled using the Streams build service and submitted
to a Streams service instance running in Cloud Pak for Data.

	Environment variables:
	These environment variables define how the application is built and submitted.

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

IBM Cloud Pak for Data standalone configuration

The Topology is compiled using the Streams build service and submitted
to a Streams service instance using REST apis.

	Environment variables:
	These environment variables define how the application is built and submitted.

	STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>

	STREAMS_REST_URL - Streams SWS service (REST API) URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

IBM Streams on-premise 4.2 & 4.3

The Topology is compiled locally and the resultant Streams application bundle
(sab file) is submitted to an IBM Streams instance.

	Environment variables:
	These environment variables define how the application is built and submitted.

	STREAMS_INSTALL - Location of a IBM Streams installation (4.2 or 4.3).

	STREAMS_DOMAIN_ID - Domain identifier for the Streams instance.

	STREAMS_INSTANCE_ID - Instance identifier.

	STREAMS_ZKCONNECT - (optional) ZooKeeper connection string for domain (when not using an embedded ZooKeeper)

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

Warning

streamtool is used to submit the job with on-premise 4.2 & 4.3 Streams and requires that streamtool does not prompt for authentication. This is achieved by using streamtool genkey.

See also

Generating authentication keys for IBM Streams [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html]

	
EDGE = 'EDGE'

	Submission to build service running on IBM Cloud Pak for Data to create an image for Edge.

The Topology is compiled and the resultant Streams application bundle
(sab file) is added to an image for Edge.

IBM Cloud Pak for Data integated configuration

Projects (within cluster)

The Topology is compiled using the Streams build service for
a Streams service instance running in the same Cloud Pak for
Data cluster as the Jupyter notebook or script declaring the application.

The instance is specified in the configuration passed into submit(). The code that selects a service instance by name is:

from streamsx.topology.context import submit, ContextTypes
from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams")

topo = Topology()
...
submit(ContextTypes.EDGE, topo, cfg)

The resultant cfg dict may be augmented with other values such as
keys from ConfigParams or JobConfig.
For example, apply imageName and imageTag:

from streamsx.topology.context import submit, ContextTypes, JobConfig
from icpd_core import icpd_util
cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams")

topo = Topology()
...
jc = JobConfig()
jc.raw_overlay = {'edgeConfig': {'imageName':'py-sample-app', 'imageTag':'v1.0'}}
jc.add(cfg)

submit(ContextTypes.EDGE, topo, cfg)

External to cluster or project

The Topology is compiled using the Streams build service for a Streams service instance running in Cloud Pak for Data.

	Environment variables:
	These environment variables define how the application is built and submitted.

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Example code to query the base images:

from streamsx.build import BuildService

bs = BuildService.of_endpoint(verify=False)
baseImages = bs.get_base_images()
print('# images = ' + str(len(baseImages)))
for i in baseImages:
 print(i.id)
 print(i.registry)

Example code to select a base image for the image build:

from streamsx.topology.context import submit, ContextTypes, JobConfig
topo = Topology()
...
jc = JobConfig()
jc.raw_overlay = {'edgeConfig': {'imageName':'py-sample-app', 'imageTag':'v1.0', 'baseImage':'streams-base-edge-conda-el7:5.3.0.0'}}
jc.add(cfg)

submit(ContextTypes.EDGE, topo, cfg)

EDGE configuration

The dict edgeConfig supports the following fields that are used for the image creation:

	imageName - [str] name of the image

	imageTag - [str] name of the image tag

	baseImage - [str] identify the name of the base image

	pipPackages - [list] identify one or more Python install packages that are to be included in the image.

	condaPackages - [list] identify one or more anaconda packages that are to be included in the image.

	rpms - [list] identify one or more linux RPMs that are to be included in the image

	locales - [list] identify one or more locales that are to be included in the image. The first item in the list is the “default” locale. The locales are identified in the java format <language>_<county>_<variant>. Example: “en_US”

Example with adding pip packages and rpms:

jc.raw_overlay = {'edgeConfig': {'imageName': image_name, 'imageTag': image_tag, 'pipPackages':['pandas','numpy'], 'rpms':['atlas-devel']}}

	
EDGE_BUNDLE = 'EDGE_BUNDLE'

	Creates a Streams application bundle.

The Topology is compiled on build service running on IBM Cloud Pak for Data and the resultant Streams application bundle
(sab file) is downloaded.

Note

EDGE_BUNDLE is typically only used when diagnosing issues with applications for EDGE.

	
STANDALONE = 'STANDALONE'

	Build and execute locally.

Compiles and executes the Topology locally in IBM Streams standalone mode as a separate sub-process.
Typically used for devlopment and testing.

The call to submit() return when (if) the application completes. An application
completes when it has finite source streams and all tuples from those streams have been
processed by the complete topology. If the source streams are infinite (e.g. reading tweets)
then the standalone application will not complete.

	Environment variables:
	This environment variables define how the application is built.

	STREAMS_INSTALL - Location of a IBM Streams installation (4.0.1 or later).

	
STREAMING_ANALYTICS_SERVICE = 'STREAMING_ANALYTICS_SERVICE'

	Submission to Streaming Analytics service running on IBM Cloud.

The Topology is compiled and the resultant Streams application bundle
(sab file) is submitted for execution on the Streaming Analytics service.

When STREAMS_INSTALL is not set or the submit() config parameter has
FORCE_REMOTE_BUILD set to True the compilation of the application
occurs remotely by the service. This allows creation and submission of Streams applications
without a local install of IBM Streams.

When STREAMS_INSTALL is set and the submit() config parameter has
FORCE_REMOTE_BUILD set to False or not set then the creation of the
Streams application bundle occurs locally and the bundle is submitted for execution on the service.

	Environment variables:
	These environment variables define how the application is built and submitted.

	STREAMS_INSTALL - (optional) Location of a IBM Streams installation (4.0.1 or later). The install must be running on RedHat/CentOS 7 and x86_64 architecture.

	
TOOLKIT = 'TOOLKIT'

	Creates an SPL toolkit.

Topology applications are implemented as an SPL application before compilation into an Streams application
bundle. This context type produces the intermediate SPL toolkit that is input to the SPL compiler for
bundle creation.

Note

TOOLKIT is typically only used when diagnosing issues with bundle generation.

	
class streamsx.topology.context.ConfigParams

	Bases: object

Configuration options which may be used as keys in submit() config parameter.

	
FORCE_REMOTE_BUILD = 'topology.forceRemoteBuild'

	Force a remote build of the application.

When submitting to STREAMING_ANALYTICS_SERVICE a local build of the Streams application bundle
will occur if the environment variable STREAMS_INSTALL is set. Setting this flag to True ignores the
local Streams install and forces the build to occur remotely using the service.

	
JOB_CONFIG = 'topology.jobConfigOverlays'

	Key for a JobConfig object representing a job configuration for a submission.

	
SC_OPTIONS = 'topology.sc.options'

	Options to be passed to IBM Streams sc command.

A topology is compiled into a Streams application
bundle (sab) using the SPL compiler sc.

Additional options to be passed to sc
may be set using this key. The value can be a
single string option (e.g. --c++std=c++11 to select C++ 11 compilation)
or a list of strings for multiple options.

Setting sc options may be required when invoking SPL operators
directly or testing SPL applications.

Warning

Options that modify the requested submission context (e.g. setting
a different main composite) or deprecated options should not be specified.

New in version 1.12.10.

	
SERVICE_DEFINITION = 'topology.service.definition'

	Streaming Analytics service definition.
Identifies the Streaming Analytics service to use. The definition can be one of

	The service credentials copied from the Service credentials page of the service console (not the Streams console).
Credentials are provided in JSON format. They contain such as the API key and secret, as well as connection information for the service.

	A JSON object (dict) created from the service credentials, for example with json.loads(service_credentials)

	A JSON object (dict) of the form: { "type": "streaming-analytics", "name": "service name", "credentials": ... }
with the service credentials as the value of the credentials key. The value of the credentials key can
be a JSON object (dict) or a str copied from the Service credentials page of the service console.

This key takes precedence over VCAP_SERVICES and SERVICE_NAME.

See also

Service definition

	
SERVICE_NAME = 'topology.service.name'

	Streaming Analytics service name.

Selects the specific Streaming Analytics service from VCAP service definitions
defined by the the environment variable VCAP_SERVICES or the key VCAP_SERVICES in the submit config.

See also

Selecting the service

	
SSL_VERIFY = 'topology.SSLVerify'

	Key for the SSL verification value passed to requests as its verify
option for distributed contexts. By default set to True.

Note

Only True or False is supported. Behaviour is undefined
when passing a path to a CA_BUNDLE file or directory with
certificates of trusted CAs.

New in version 1.11.

	
STREAMS_CONNECTION = 'topology.streamsConnection'

	Key for a StreamsConnection object for connecting to a running IBM Streams instance. Only supported for Streams 4.2, 4.3. Requires environment
variable STREAMS_INSTANCE_ID to be set.

	
VCAP_SERVICES = 'topology.service.vcap'

	Streaming Analytics service definitions including credentials in VCAP_SERVICES format.

Provides the connection credentials when connecting to a Streaming Analytics service
using context type STREAMING_ANALYTICS_SERVICE.
The streaming-analytics service to use within the service definitions is identified
by name using SERVICE_NAME.

The key overrides the environment variable VCAP_SERVICES.

	The value can be:
	
	Path to a local file containing a JSON representation of the VCAP services information.

	Dictionary containing the VCAP services information.

See also

VCAP services

	
class streamsx.topology.context.JobConfig(job_name=None, job_group=None, preload=False, data_directory=None, tracing=None)

	Bases: object

Job configuration.

JobConfig allows configuration of job that will result from
submission of a Topology (application).

A JobConfig is set in the config dictionary passed to submit()
using the key JOB_CONFIG. add() exists as a convenience
method to add it to a submission configuration.

A JobConfig can also be used when submitting a Streams application
bundle through the Streaming Analytics REST API method submit_job().

	Parameters

	
	job_name (str) – The name that is assigned to the job. A job name must be unique within a Streasm instance
When set to None a system generated name is used.

	job_group (str) – The job group to use to control permissions for the submitted job.

	preload (bool) – Specifies whether to preload the job onto all resources in the instance, even if the job is
not currently needed on each. Preloading the job can improve PE restart performance if the PEs are
relocated to a new resource.

	data_directory (str) – Specifies the location of the optional data directory. The data directory is a path
within the cluster that is running the Streams instance.

	tracing – Specify the application trace level. See tracing

Example:

Submit a job with the name NewsIngester
cfg = {}
job_config = JobConfig(job_name='NewsIngester')
job_config.add(cfg)
context.submit('STREAMING_ANALYTICS_SERVICE', topo, cfg)

See also

Job configuration overlays reference [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html]

	
add(config)

	Add this JobConfig into a submission configuration object.

	Parameters

	config (dict) – Submission configuration.

	Returns

	config.

	Return type

	dict

	
as_overlays()

	Return this job configuration as a complete job configuration overlays object.

Converts this job configuration into the full format supported by IBM Streams.
The returned dict contains:

	jobConfigOverlays key with an array containing a single job configuration overlay.

	an optional comment key containing the comment str.

For example with this JobConfig:

jc = JobConfig(job_name='TestIngester')
jc.comment = 'Test configuration'
jc.target_pe_count = 2

the returned dict would be:

{"comment": "Test configuration",
 "jobConfigOverlays":
 [{"jobConfig": {"jobName": "TestIngester"},
 "deploymentConfig": {"fusionTargetPeCount": 2, "fusionScheme": "manual"}}]}

The returned overlays object can be saved as JSON in a file
using json.dump. A file can be used with job submission
mechanisms that support a job config overlays file, such as
streamtool submitjob or the IBM Streams console.

Example of saving a JobConfig instance as a file:

jc = JobConfig(job_name='TestIngester')
with open('jobconfig.json', 'w') as f:
 json.dump(jc.as_overlays(), f)

	Returns

	Complete job configuration overlays object built from this object.

	Return type

	dict

New in version 1.9.

	
property comment

	Comment for job configuration.

The comment does not change the functionality of the job configuration.

	Returns

	Comment text, None if it has not been set.

	Return type

	str

New in version 1.9.

	
static from_overlays(overlays)

	Create a JobConfig instance from a full job configuration
overlays object.

All logical items, such as comment and job_name, are
extracted from overlays. The remaining information in the
single job config overlay in overlays is set as raw_overlay.

	Parameters

	overlays (dict) – Full job configuration overlays object.

	Returns

	Instance representing logical view of overlays.

	Return type

	JobConfig

New in version 1.9.

	
property raw_overlay

	Raw Job Config Overlay.

A submitted job is configured using Job Config Overlay which
is represented as a JSON. JobConfig exposes Job Config Overlay
logically with properties such as job_name and tracing.
This property (as a dict) allows merging of the
configuration defined by this object and raw representation
of a Job Config Overlay. This can be used when a capability
of Job Config Overlay is not exposed logically through this class.

For example, the threading model can be set by:

jc = streamsx.topology.context.JobConfig()
jc.raw_overlay = {'deploymentConfig': {'threadingModel': 'manual'}}

Any logical items set by this object overwrite any set with
raw_overlay. For example this sets the job name to
to value set in the constructor (DBIngest) not the value
in raw_overlay (Ingest):

jc = streamsx.topology.context.JobConfig(job_name='DBIngest')
jc.raw_overlay = {'jobConfig': {'jobName': 'Ingest'}}

Note

Contents of raw_overlay is a dict that is
must match a single Job Config Overlay and be serializable
as JSON to the correct format.

See also

Job Config Overlay reference [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html]

New in version 1.9.

	
property submission_parameters

	Job submission parameters.

Submission parameters values for the job. A dict object
that maps submission parameter names to values.

New in version 1.9.

	
property target_pe_count

	Target processing element count.

When submitted against a Streams instance target_pe_count provides
a hint to the scheduler as to how to partition the topology
across processing elements (processes) for the job execution. When a job
contains multiple processing elements (PEs) then the Streams scheduler can
distributed the PEs across the resources (hosts) running in the instance.

When set to None (the default) no hint is supplied to the scheduler.
The number of PEs in the submitted job will be determined by the scheduler.

The value is only a target and may be ignored when the topology contains
isolate() calls.

Note

Only supported in Streaming Analytics service and IBM Streams 4.2 or later.

	
property tracing

	Runtime application trace level.

The runtime application trace level can be a string with value error, warn, info,
debug or trace.

In addition a level from Python logging module can be used in with CRITICAL and ERROR mapping
to error, WARNING to warn, INFO to info and DEBUG to debug.

Setting tracing to None or logging.NOTSET will result in the job submission using the Streams instance
application trace level.

The value of tracing is the level as a string (error, warn, info, debug or trace)
or None.

	
class streamsx.topology.context.SubmissionResult(results)

	Bases: object

Passed back to the user after a call to submit.
Allows the user to use dot notation to access dictionary elements.

Example accessing result files when using BUNDLE:

submission_result = submit(ContextTypes.BUNDLE, topology, config)
print(submission_result.bundlePath)
...
os.remove(submission_result.bundlePath)
os.remove(submission_result.jobConfigPath)

Result contains the generated toolkit location when using TOOLKIT:

submission_result = submit(ContextTypes.TOOLKIT, topology, config)
print(submission_result.toolkitRoot)

Result when using DISTRIBUTED depends if the Topology is compiled locally and the resultant Streams application bundle
(sab file) is submitted to an IBM Streams instance or if the Topology is compiled on build-service and submitted to an instance in Cloud Pak for Data:

submission_result = submit(ContextTypes.DISTRIBUTED, topology, config)
print(submission_result)

Result contains the generated image, imageDigest, submitMetrics (building the bundle), submitImageMetrics (building the image) when using EDGE:

submission_result = submit(ContextTypes.EDGE, topology, config)
print(submission_result.image)
print(submission_result.imageDigest)

	
cancel_job_button(description=None)

	Display a button that will cancel the submitted job.

Used in a Jupyter IPython notebook to provide an interactive
mechanism to cancel a job submitted from the notebook.

Once clicked the button is disabled unless the cancel fails.

A job may be cancelled directly using:

submission_result = submit(ctx_type, topology, config)
submission_result.job.cancel()

	Parameters

	description (str) – Text used as the button description, defaults to value based upon the job name.

Warning

Behavior when called outside a notebook is undefined.

New in version 1.12.

	
property job

	REST binding for the job associated with the submitted build.

	Returns

	REST binding for running job or None if connection information was not available or no job was submitted.

	Return type

	Job

	
streamsx.topology.context.submit(ctxtype, graph, config=None, username=None, password=None)

	Submits a Topology (application) using the specified context type.

Used to submit an application for compilation into a Streams application and
execution within an Streaming Analytics service or IBM Streams instance.

ctxtype defines how the application will be submitted, see ContextTypes.

The parameters username and password are only required when submitting to an
IBM Streams instance and it is required to access the Streams REST API from the
code performing the submit. Accessing data from views created by
view() requires access to the Streams REST API.

	Parameters

	
	ctxtype (str) – Type of context the application will be submitted to. A value from ContextTypes.

	graph (Topology) – The application topology to be submitted.

	config (dict) – Configuration for the submission, augmented with values such as a JobConfig or keys from ConfigParams.

	username (str) – Deprecated: Username for the Streams REST api. Use environment variable STREAMS_USERNAME if using user-password authentication.

	password (str) – Deprecated: Password for username. Use environment variable STREAMS_PASSWORD if using user-password authentication.

	Returns

	Result of the submission. Content depends on ContextTypes
constant passed as ctxtype.

	Return type

	SubmissionResult

	
streamsx.topology.context.build(topology, config=None, dest=None, verify=None)

	Build a topology to produce a Streams application bundle.

Builds a topology using submit() with context type BUNDLE. The result is a sab file on the local file system along
with a job config overlay file matching the application.

The build uses a build service or a local install, see BUNDLE for details.

	Parameters

	
	topology (Topology) – Application topology to be built.

	config (dict) – Configuration for the build.

	dest (str) – Destination directory for the sab and JCO files. Default is context specific.

	verify – SSL verification used by requests when using a build service. Defaults to enabling SSL verification.

	Returns

	3-element tuple containing

	bundle_path (str): path to the bundle (sab file) or None if not created.

	jco_path (str): path to file containing the job config overlay for the application or None if not created.

	result (SubmissionResult): value returned from submit.

See also

BUNDLE for details on how to configure the build service to use.

New in version 1.14.

	
streamsx.topology.context.run(topology, config=None, job_name=None, verify=None, ctxtype='DISTRIBUTED')

	Run a topology in a distributed Streams instance.

Runs a topology using submit() with context type DISTRIBUTED (by default). The result is running Streams job.

	Parameters

	
	topology (Topology) – Application topology to be run.

	config (dict) – Configuration for the build.

	job_name (str) – Optional job name. If set will override any job name in config.

	verify – SSL verification used by requests when using a build service. Defaults to enabling SSL verification.

	ctxtype (str) – Context type for submission.

	Returns

	2-element tuple containing

	job (Job): REST binding object for the running job or None if no job was submitted.

	result (SubmissionResult): value returned from submit.

See also

DISTRIBUTED for details on how to configure the Streams instance to use.

New in version 1.14.

streamsx.topology.schema

Schemas for streams.

Overview

A stream represents an unbounded flow of tuples with a declared schema so that each tuple on the stream complies with the schema. A stream’s schema may be one of:

	StreamsSchema structured schema - a tuple is a sequence of attributes, and an attribute is a named value of a specific type.

	Json a tuple is a JSON object.

	String a tuple is a string.

	Python a tuple is any Python object, effectively an untyped stream.

Structured schemas

A structured schema is a sequence of attributes, and an attribute is a named value of a specific type. For example a stream of sensor readings can be represented as a schema with three attributes sensor_id, ts and reading with types of int64, int64 and float64 respectively.

This schema can be declared a number of ways:

Python 3.6:

class SensorReading(typing.NamedTuple):
 sensor_id: int
 ts: int
 reading: float

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

SensorReading = typing.NamedTuple('SensorReading',
 [('sensor_id', int), ('ts', int), ('reading', float)]

sensors = raw_readings.map(parse_sensor, schema=SensorReading)

Python 3:

sensors = raw_readings.map(parse_sensor,
 schema='tuple<int64 sensor_id, int64 ts, float64 reading>')

The supported types are defined by IBM Streams and are listed in StreamSchema.

Structured schemas provide type-safety and efficient network serialization when compared to passing a dict using Python streams.

Streams with structured schemas can be interchanged with any IBM Streams application using publish() and subscribe() maintaining type safety.

Defining a stream’s schema

Every stream within a Topology has defined schema. The schema may be defined explictly (for example map() or subscribe()) or implicity (for example filter() produces a stream with the same schema as its input stream).

Explictly defining a stream’s schema is flexible and various types of values are accepted as the schema.

	Builtin types as aliases for common schema types:

	json (module) - for Json

	str - for String

	object - for Python

	Values of the enumeration CommonSchema

	An instance of typing.NamedTuple (Python 3)

	An instance of StreamSchema

	A string of the format tuple<...> defining the attribute names and types. See StreamSchema for details on the format and types supported.

	A string containing a namespace qualified SPL stream type (e.g. com.ibm.streams.geospatial::FlightPathEncounterTypes.Observation3D)

Module contents

Functions

	is_common

	Is schema an common schema.

Classes

	CommonSchema

	Common stream schemas for interoperability within Streams applications.

	StreamSchema

	Defines a schema for a structured stream.

	
streamsx.topology.schema.is_common(schema)

	Is schema an common schema.

	Parameters

	schema – Scheme to test.

	Returns

	True if schema is a common schema, otherwise False.

	Return type

	bool

	
class streamsx.topology.schema.StreamSchema(schema)

	Bases: object

Defines a schema for a structured stream.

On a structured stream a tuple is a sequence of attributes,
and an attribute is a named value of a specific type.

The supported types are defined by IBM Streams and include such
types as int8, int16, rstring and list<float32>.

A structured schema can be defined using a typing.NamedTuple in
Python 3, a string with the syntax tuple<type name [,...]> or
an instance of this class.

typing.NamedTuple:

A typing.NamedTuple can be used to define a structured
schema with the field names and types mapping to the
structured schema attribute names and types.

Python types are mapped to IBM Streams types as follows:

	Python type

	IBM Streams type

	str

	rstring

	bool

	boolean

	int

	int64

	float

	float64

	decimal.Decimal

	decimal128

	complex

	complex64

	bytes

	blob

	streamsx.spl.types.Timestamp

	timestamp

	datetime.datetime

	timestamp

	typing.List[T]

	list<T>

	typing.Set[T]

	set<T>

	typing.Mapping[K,V]

	map<K,V>

	typing.Optional[T]

	optional<T>

Note

Tuples on a stream with a schema defined by a
typing.NamedTuple instance are passed into callables
as instance of a named tuple with the the correct field
names and types. This is not guaranteed to be the same class
instance as the one used to declare the schema.

Tuple string:

A string of the format tuple<type name [,…]> can be used
to define a structured schema, where type is an IBM Streams type.

Example:

tuple<rstring id, timestamp ts, float64 value>

represents a schema with three attributes suitable for a sensor reading.

IBM Streams types:

	Type

	Description

	Python representation

	Conversion from Python

	boolean

	True or False

	bool

	bool(value)

	int8

	8-bit signed integer

	int

	int(value) truncated to 8 bits

	int16

	16-bit signed integer

	int

	int(value) truncated to 16 bits

	int32

	32-bit signed integer

	int

	int(value) truncated to 32 bits

	int64

	64-bit signed integer

	int

	int(value)

	uint8

	8-bit unsigned integer

	int

	
	

	uint16

	16-bit unsigned integer

	int

	
	

	uint32

	32-bit unsigned integer

	int

	
	

	uint64

	64-bit unsigned integer

	int

	
	

	float32

	32-bit binary floating point

	float

	float(value) truncated to 32 bits

	float64

	64-bit binary floating point

	float

	float(value)

	decimal32

	32-bit decimal floating point

	decimal.Decimal

	decimal.Decimal(value) normalized to IEEE 754 decimal32

	decimal64

	64-bit decimal floating point

	decimal.Decimal

	decimal.Decimal(value) normalized to IEEE 754 decimal64

	decimal128

	128-bit decimal floating point

	decimal.Decimal

	decimal.Decimal(value) normalized to IEEE 754 decimal128

	complex32

	complex with float32 values

	complex

	complex(value) with real and imaginary values truncated to 32 bits

	complex64

	complex with float64 values

	complex

	complex(value)

	timestamp

	Nanosecond timestamp

	Timestamp

	
	

	rstring

	UTF-8 string

	str

	str(value)

	rstring[N]

	Bounded UTF-8 string

	str

	str(value)

	ustring

	UTF-16 string

	str

	str(value)

	blob

	Sequence of bytes

	memoryview

	
	

	list<T>

	List with elements of type T

	list

	
	

	list<T>[N]

	Bounded list

	list

	
	

	set<T>

	Set with elements of type T

	set

	
	

	set<T>[N]

	Bounded set

	set

	
	

	map<K,V>

	Map with typed keys and values

	dict

	
	

	map<K,V>[N]

	Bounded map, limted to N pairs

	dict

	
	

	optional<T>

	Optional value of type T

	Value of type T, or None

	Value of for type T

	enum{id [,...]}

	Enumeration

	Not supported

	Not supported

	xml

	XML value

	Not supported

	Not supported

	tuple<type name [, ...]>

	Nested tuple

	Not supported

	Not supported

Note

Type optional<T> requires IBM Streams 4.3 or later.

Python representation is how an attribute value in a structured schema is passed into a Python function.

Conversion from Python indicates how a value from Python is converted to an attribute value in a structured schema.
For example a value v assigned to float64 attribute is converted as though float(v) is called first,
thus v may be a float, int or any type that has a __float__ method.

When a type is not supported in Python it can only be used in a schema used for streams produced and consumed by invocation of SPL operators.

A StreamSchema can be created by passing a string of the
form tuple<...> or by passing the name of an SPL type from
an SPL toolkit, for example com.ibm.streamsx.transportation.vehicle::VehicleLocation.

Attribute names must start with an ASCII letter or underscore, followed by ASCII letters, digits, or underscores.

When a tuple on a structured stream is passed into a Python callable it
is converted to a dict, tuple or named tuple object containing all attributes of the stream tuple.
See style(), as_dict() and as_tuple() for details.

When a Python object is submitted to a structured stream,
for example as the return from the function invoked in a
map() with the
schema parameter set, it must be:

	A Python dict. Attributes are set by name using value in the dict for the name. If a value does not exist (the name does not exist as a key) or is set to None then the attribute has its default value, zero, false, empty list or string etc.

	A Python tuple or named tuple. Attributes are set by position, with the first attribute being the value at index 0 in the Python tuple. If a value does not exist (the tuple has less values than the structured schema) or is set to None then the attribute has its default value, zero, false, empty list or string etc.

	Parameters

	schema (str) – Schema definition. Either a schema definition or the name of an SPL type.

	
as_dict()

	Create a structured schema that will pass stream tuples into callables as dict instances.
This allows a return to the default calling style for a structured schema.

If this instance represents a common schema then it will be returned
without modification. Stream tuples with common schemas are always passed according
to their definition.

	Returns

	Schema passing stream tuples as dict if allowed.

	Return type

	StreamSchema

New in version 1.8.

	
as_tuple(named=None)

	Create a structured schema that will pass stream tuples into callables as tuple instances.

If this instance represents a common schema then it will be returned
without modification. Stream tuples with common schemas are
always passed according to their definition.

Passing as tuple

When named evaluates to False then each stream tuple will
be passed as a tuple. For example with a structured schema
of tuple<rstring id, float64 value> a value is passed as
('TempSensor', 27.4) and access to the first attribute
is t[0] and the second as t[1] where t represents
the passed value..

Passing as named tuple

When named is True or a str then each stream tuple will
be passed as a named tuple. For example with a structured schema
of tuple<rstring id, float64 value> a value is passed as
('TempSensor', 27.4) and access to the first attribute
is t.id (or t[0]) and the second as t.value (t[1])
where t represents the passed value.

Warning

If an schema’s attribute name is not a valid Python identifier or
starts with an underscore then it will be renamed as positional name _n.
For example, with the schema tuple<int32 a, int32 def, int32 id> the
field names are a, _1, _2.

The value of named is used as the name of the named tuple
class with StreamTuple used when named is True.

It is not guaranteed that the class of the namedtuple is the
same for all callables processing tuples with the same
structured schema, only that the tuple is a named tuple
with the correct field names.

	Parameters

	named – Pass stream tuples as a named tuple.
If not set then stream tuples are passed as
instances of tuple.

	Returns

	Schema passing stream tuples as tuple if allowed.

	Return type

	StreamSchema

New in version 1.8.

New in version 1.9: Addition of named parameter.

	
extend(schema)

	Extend a structured schema by another.

For example extending tuple<rstring id, timestamp ts, float64 value>
with tuple<float32 score> results in tuple<rstring id, timestamp ts, float64 value, float32 score>.

	Parameters

	schema (StreamSchema) – Schema to extend this schema by.

	Returns

	New schema that is an extension of this schema.

	Return type

	StreamSchema

	
schema()

	Private method. May be removed at any time.

	
property style

	Style stream tuples will be passed into a callable.

For the common schemas the style is fixed:

	CommonSchema.Python - object - Stream tuples are arbitrary objects.

	CommonSchema.String - str - Stream tuples are unicode strings.

	CommonSchema.Json - dict - Stream tuples are a dict that represents the JSON object.

For a structured schema the supported styles are:

	dict - Stream tuples are passed as a dict with the key being the attribute name and and the value the attribute value. This is the default.

	E.g. with a schema of tuple<rstring id, float32 value> a value is passed as {'id':'TempSensor', 'value':20.3}.

	tuple - Stream tuples are passed as a tuple with the value being the attributes value in order. A schema is set to pass stream tuples as tuples using as_tuple().

	E.g. with a schema of tuple<rstring id, float32 value> a value is passed as ('TempSensor', 20.3).

	namedtuple - Stream tuples are passed as a named tuple (see collections.namedtuple) with the value being the attributes value in order. Field names correspond to the attribute names of the schema. A schema is set to pass stream tuples as named tuples using as_tuple() setting the named parameter.

	Returns

	Class of tuples that will be passed into callables.

	Return type

	type

New in version 1.8.

New in version 1.9: Support for namedtuple.

	
class streamsx.topology.schema.CommonSchema

	Bases: enum.Enum

Common stream schemas for interoperability within Streams applications.

Streams application can publish streams that are subscribed to by other applications.
Use of common schemas allow streams connections regardless of the application implementation language.

Python applications publish streams using publish()
and subscribe using subscribe().

	Python - Stream constains Python objects.

	Json - Stream contains JSON objects.

	String - Stream contains strings.

	Binary - Stream contains binary tuples.

	XML - Stream contains XML documents.

	
Binary = <streamsx.topology.schema.StreamSchema object>

	Stream where each tuple is a binary object (sequence of bytes).

Warning

Binary is not yet supported for Python applications.

	
Json = <streamsx.topology.schema.StreamSchema object>

	Stream where each tuple is logically a JSON object.

Json can be used as a natural interchange format between Streams applications
implemented in different programming languages. All languages supported by
Streams support publishing and subscribing to JSON streams.

A Python callable receives each tuple as a dict as though it was
created from json.loads(json_formatted_str) where json_formatted_str
is the JSON formatted representation of tuple.

Python objects that are to be converted to JSON objects
must be supported by JSONEncoder. If the object is not a dict
then it will be converted to a JSON object with a single key payload
containing the value.

	
Python = <streamsx.topology.schema.StreamSchema object>

	Stream where each tuple is a Python object. Each object
must be picklable to allow execution in a distributed
environment where streams can connect processes
running on the same or different resources.

Python streams can only be used by Python applications.

	
String = <streamsx.topology.schema.StreamSchema object>

	Stream where each tuple is a string.

String can be used as a natural interchange format between Streams applications
implemented in different programming languages. All languages supported by
Streams support publishing and subscribing to string streams.

A Python callable receives each tuple as a str object.

Python objects are converted to strings using str(obj).

	
XML = <streamsx.topology.schema.StreamSchema object>

	Stream where each tuple is an XML document.

Warning

XML is not yet supported for Python applications.

	
extend(schema)

	Extend a structured schema by another.

	Parameters

	schema (StreamSchema) – Schema to extend this schema by.

	Returns

	New schema that is an extension of this schema.

	Return type

	StreamSchema

	
schema()

	Private method. May be removed at any time.

streamsx.topology.state

Application state.

Overview

Stateful applications are ones that include callables that are classes and
thus can maintain state as instance variables.

By default any state is reset to its initial state after a
processing element (PE) restart. A restart may occur due to:

	a failure in the PE or its resource,

	a explicit PE restart request,

	or a parallel region width change (IBM Streams 4.3 or later)

The application or a portion of it may be configured to maintain
state after a PE restart by one of two mechanisms.

	Consistent region. A consistent region is a subgraph where the states of callables become consistent by processing all the tuples within defined points on a stream. After a PE restart all callables in the region are reset to the last consistent point, so that the state of all callables represents the processing of the same input tuples to the region.

	streamsx.topology.topology.Stream.set_consistent()

	ConsistentRegionConfig

	Consistent region overview [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/consistentregions.html]

	Checkpointing, each stateful callable is checkpointed periodically and after a PE restart its callables are reset to their most recent checkpointed state.

	streamsx.topology.topology.Topology.checkpoint_period

Stateful callables

Use of a class instance allows a transformation (for example map()) to be stateful by maintaining state in instance
attributes across invocations.

When the callable is in a consistent region or checkpointing then it is serialized using dill. The default serialization may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the callable as __enter__ and __exit__ context manager methods then __enter__ is called after the object has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as open files or sockets.

Module contents

Classes

	ConsistentRegionConfig

	A ConsistentRegionConfig configures a consistent region.

	
class streamsx.topology.state.ConsistentRegionConfig(trigger=None, period=None, drain_timeout=180, reset_timeout=180, max_consecutive_attempts=5)

	Bases: object

A ConsistentRegionConfig configures a consistent region.

The recommended way to create a ConsistentRegionConfig is
to call either operator_driven() or periodic().

	Parameters

	
	trigger (ConsistentRegionConfig.Trigger) – Determines how the
drain/checkpoint cycle of the consistent region is triggered.

	period – The trigger period. If the trigger is PERIODIC, this must
be specified, otherwise it may not be specfied. This may be
either a datetime.timedelta value or the number of
seconds as a float.

	drain_timeout – Indicates the maximum time in seconds that the drain
and checkpoint of the region is allotted to finish processing.
If the process takes longer than the specified time, a failure
is reported and the region is reset to the point of the
previously successfully established consistent state. The value
must be specified as either a
datetime.timedelta value or the number of seconds
as a float. If not specified, the default value is 180
seconds.

	reset_timeout – Indicates the maximum time in seconds that the reset
of the region is allotted to finish processing. If the process
takes longer than the specified time, a failure is reported and
another reset of the region is attempted. The value must be
specified as either a datetime.timedelta value or
the number of seconds as a float. If not specified, the
default value is 180 seconds.

	max_consecutive_attempts (int) – Indicates the maximum number of
consecutive attempts to reset a consistent region. After a
failure, if the maximum number of attempts is reached, the
region stops processing new tuples. After the maximum number
of consecutive attempts is reached, a region can be reset only
with manual intervention or with a program with a call to a
method in the consistent region controller. This must be an
integer value between 1 and 2147483647, inclusive. If not
specified, the default value is 5.

Example:

set source to be a the start of an operator driven consistent region
with a drain timeout of five seconds and a reset timeout of twenty seconds.
source.set_consistent(ConsistentRegionConfig.operatorDriven(drain_timeout=5, reset_timeout=20))

See also

set_consistent()

New in version 1.11.

	
class Trigger

	Bases: enum.Enum

Defines how the drain-checkpoint cycle of a consistent region is triggered.
.. versionadded:: 1.11

	
OPERATOR_DRIVEN = 1

	Region is triggered by the start operator.

	
PERIODIC = 2

	Region is triggered periodically.

	
static operator_driven(drain_timeout=180, reset_timeout=180, max_consecutive_attempts=5)

	Define an operator-driven consistent region configuration.
The source operator triggers drain and checkpoint cycles for the region.

	Parameters

	
	drain_timeout – The drain timeout, as either a datetime.timedelta value or the number of seconds as a float. If not specified, the default value is 180 seconds.

	reset_timeout – The reset timeout, as either a datetime.timedelta value or the number of seconds as a float. If not specified, the default value is 180 seconds.

	max_consecutive_attempts (int) – The maximum number of consecutive attempts to reset the region. This must be an integer value between 1 and 2147483647, inclusive. If not specified, the default value is 5.

	Returns

	the configuration.

	Return type

	ConsistentRegionConfig

	
static periodic(period, drain_timeout=180, reset_timeout=180, max_consecutive_attempts=5)

	Create a periodic consistent region configuration.
The IBM Streams runtime will trigger a drain and checkpoint
the region periodically at the time interval specified by period.

	Parameters

	
	period – The trigger period. This may be either a datetime.timedelta value or the number of seconds as a float.

	drain_timeout – The drain timeout, as either a datetime.timedelta value or the number of seconds as a float. If not specified, the default value is 180 seconds.

	reset_timeout – The reset timeout, as either a datetime.timedelta value or the number of seconds as a float. If not specified, the default value is 180 seconds.

	max_consecutive_attempts (int) – The maximum number of consecutive attempts to reset the region. This must be an integer value between 1 and 2147483647, inclusive. If not specified, the default value is 5.

	Returns

	the configuration.

	Return type

	ConsistentRegionConfig

streamsx.topology.composite

Composite transformations.

New in version 1.14.

Module contents

Classes

	Composite

	Composite transformations support a single logical transformation being a composite of one or more basic transformations.

	ForEach

	Abstract composite for each transformation.

	Map

	Abstract composite map transformation.

	Source

	Abstract composite source.

	
class streamsx.topology.composite.Composite

	Bases: abc.ABC

Composite transformations support a single logical transformation
being a composite of one or more basic transformations.

A composite transformation is implemented as a sub-class
of Source, Map or ForEach
whose populate method populates the topology with the
required basic transformations. For example a Source composite
might have use source() followed by a
filter() to filter out unwanted events
and then a map() to parse the event into
a structured schema.

Composites may use other composites during populate.

Composites can control how the basic transformations are
visually represented. By default any transformations within
a composite are grouped visually. A composite may alter this using these
attributes of the composite instance:

	kind - Sets the name of operator kind for a group or single operator. Defaults to a combination of the module and class name of the composite, e.g. streamsx.standard.utility::Sequence. Set to a false value to disable any modification of the visual representation of the composite’s transformations.

	group - Set to a false value to disable any grouping of multiple transformations. Defaults to True to enable grouping.

The values of kind and group are checked after the expansion
of the composite using populate.

	
class streamsx.topology.composite.Source

	Bases: streamsx.topology.composite.Composite

Abstract composite source.

An instance of a subclass can be passed to source()
to create a source stream that is composed of one or more basic transformations.

Example assuming RawTweets is Python iterable that produces
raw tweets:

class Tweets(streamsx.topology.composite.Source):
 def __init__(self, track):
 self.track = track

 def populate(self, topology, name, **options):
 # get all the tweets
 tweets = topology.source(RawTweets(track=self.track), name=name)
 # filter so that only with a message are returned
 return tweets.filter(lambda tweet : tweet['text'])

This class can then be used as follows:

topo = Topology()
gf_tweets = topo.source(Tweets(track=['glutenfree', 'gf']))

	
abstract populate(topology, name, **options)

	Populate the topology with this composite source.

	Parameters

	
	topology (Topology) – Topology containing the source.

	name (Optional[str]) – Name passed into source.

	**options – Future options passed to source.

	Returns

	Single stream representing the source.

	Return type

	Stream

	
class streamsx.topology.composite.Map

	Bases: streamsx.topology.composite.Composite

Abstract composite map transformation.

An instance of a subclass can be passed to map()
to create a stream that is composed of one or more basic transformations
of an input stream.

Example:

class WordCount(streamsx.topology.composite.Map):
 def __init__(self, period, update):
 self.period = period
 self.update = update

 def populate(self, topology, stream, schema, name, **options):
 words = stream.flat_map(lambda line : line.split())
 win = words.last(size=self.period).trigger(self.update).partition(lambda s : s)
 return win.aggregate(lambda values : (values[0], len(values)))

	
abstract populate(topology, stream, schema, name, **options)

	Populate the topology with this composite map transformation.

	Parameters

	
	topology (Topology) – Topology containing the composite map.

	stream (Stream) – Stream to be transformed.

	schema (Union[StreamSchema, CommonSchema, str, NamedTuple]) – Schema passed into map.

	name (Optional[str]) – Name passed into map.

	**options – Future options passed to map.

	Returns

	Single stream representing the transformation of stream.

	Return type

	Stream

	
class streamsx.topology.composite.ForEach

	Bases: streamsx.topology.composite.Composite

Abstract composite for each transformation.

An instance of a subclass can be passed to for_each() to create a sink (stream termination) that is
composed of one or more basic transformations of an input stream.

	
abstract populate(topology, stream, name, **options)

	Populate the topology with this composite for each transformation.

	Parameters

	
	topology (Topology) – Topology containing the composite map.

	stream (Stream) – Stream to be transformed.

	name (Optional[str]) – Name passed into for_each.

	**options – Future options passed to for_each.

	Returns

	Termination for this composite transformation of stream.

	Return type

	Sink

streamsx.topology.tester

Testing support for streaming applications.

Overview

Allows testing of a streaming application by creation conditions
on streams that are expected to become valid during the processing.
Tester is designed to be used with Python’s unittest module.

A complete application may be tested or fragments of it, for example a sub-graph can be tested
in isolation that takes input data and scores it using a model.

Supports execution of the application on
STREAMING_ANALYTICS_SERVICE,
DISTRIBUTED
or STANDALONE.

A Tester instance is created and associated with the Topology to be tested.
Conditions are then created against streams, such as a stream must receive 10 tuples using
tuple_count().

Here is a simple example that tests a filter correctly only passes tuples with values greater than 5:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestSimpleFilter(unittest.TestCase):

 def setUp(self):
 # Sets self.test_ctxtype and self.test_config
 Tester.setup_streaming_analytics(self)

 def test_filter(self):
 # Declare the application to be tested
 topology = Topology()
 s = topology.source([5, 7, 2, 4, 9, 3, 8])
 s = s.filter(lambda x : x > 5)

 # Create tester and assign conditions
 tester = Tester(topology)
 tester.contents(s, [7, 9, 8])

 # Submit the application for test
 # If it fails an AssertionError will be raised.
 tester.test(self.test_ctxtype, self.test_config)

A stream may have any number of conditions and any number of streams may be tested.

A local_check() is supported where a method of the
unittest class is executed once the job becomes healthy. This performs
checks from the context of the Python unittest class, such as
checking external effects of the application or using the REST api to
monitor the application.

	A test fails-fast if any of the following occur:
	
	Any condition fails. E.g. a tuple failing a tuple_check().

	The local_check() (if set) raises an error.

	
	The job for the test:
	
	Fails to become healthy.

	Becomes unhealthy during the test run.

	Any processing element (PE) within the job restarts.

A test timeouts if it does not fail but its conditions do not become valid.
The timeout is not fixed as an absolute test run time, but as a time since “progress”
was made. This can allow tests to pass when healthy runs are run in a constrained
environment that slows execution. For example with a tuple count condition of ten,
progress is indicated by tuples arriving on a stream, so that as long as gaps
between tuples are within the timeout period the test remains running until ten tuples appear.

Note

The test timeout value is not configurable.

Note

The submitted job (application under test) has additional elements (streams & operators) inserted to implement the conditions. These are visible through various APIs including the Streams console raw graph view. Such elements are put into the Tester category.

Note

The package streamsx.testing [https://pypi.org/project/streamsx.testing/] provides nose [https://pypi.org/project/nose] plugins to provide control over tests without having to modify their source code.

Changed in version 1.9: - Python 2.7 supported (except with Streaming Analytics service).

Module contents

Classes

	Tester

	Testing support for a Topology.

	
class streamsx.topology.tester.Tester(topology)

	Bases: object

Testing support for a Topology.

Allows testing of a Topology by creating conditions against the contents
of its streams.

Conditions may be added to a topology at any time before submission.

If a topology is submitted directly to a context then the graph
is not modified. This allows testing code to be inserted while
the topology is being built, but not acted upon unless the topology
is submitted in test mode.

If a topology is submitted through the test method then the topology
may be modified to include operations to ensure the conditions are met.

Warning

For future compatibility applications under test should not include intended failures that cause
a processing element to stop or restart. Thus, currently testing is against expected application behavior.

	Parameters

	topology – Topology to be tested.

	
add_condition(stream, condition)

	Add a condition to a stream.

Conditions are normally added through tuple_count(), contents() or tuple_check().

This allows an additional conditions that are implementations of Condition.

	Parameters

	
	stream (Stream) – Stream to be tested.

	condition (Condition) – Arbitrary condition.

	Returns

	stream

	Return type

	Stream

	
contents(stream, expected, ordered=True)

	Test that a stream contains the expected tuples.

	Parameters

	
	stream (Stream) – Stream to be tested.

	expected (list) – Sequence of expected tuples.

	ordered (bool) – True if the ordering of received tuples must match expected.

	Returns

	stream

	Return type

	Stream

	
eventual_result(stream, checker)

	Test a stream reaches a known result or state.

Creates a test condition that the tuples on a stream
eventually reach a known result or state. Each tuple
on stream results in a call to checker(tuple_).

	The return from checker is handled as:
	
	None - The condition requires more tuples to become valid.

	true value - The condition has become valid.

	false value - The condition has failed. Once a condition has failed it can never become valid.

Thus checker is typically stateful and allows ensuring that
condition becomes valid from a set of input tuples. For example
in a financial application the application under test may need
to achieve a final known balance, but due to timings of windows the
number of tuples required to set the final balance may be variable.

Once the condition becomes valid any false value,
except None, returned by processing of subsequent
tuples will cause the condition to fail.

Returning None effectively never changes the state of the condition.

	Parameters

	
	stream (Stream) – Stream to be tested.

	checker (callable) – Callable that returns evaluates the state of the stream with result to the result.

New in version 1.11.

	
static get_streams_version(test)

	Returns IBM Streams product version string for a test.

Returns the product version corresponding to the test’s setup.
For STANDALONE and DISTRIBUTED the product version
corresponds to the version defined by the environment variable
STREAMS_INSTALL.

	Parameters

	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	
local_check(callable)

	Perform local check while the application is being tested.

A call to callable is made after the application under test is submitted and becomes healthy.
The check is in the context of the Python runtime executing the unittest case,
typically the callable is a method of the test case.

The application remains running until all the conditions are met
and callable returns. If callable raises an error, typically
through an assertion method from unittest then the test will fail.

Used for testing side effects of the application, typically with STREAMING_ANALYTICS_SERVICE
or DISTRIBUTED. The callable may also use the REST api for context types that support
it to dynamically monitor the running application.

The callable can use submission_result and streams_connection attributes from Tester instance
to interact with the job or the running Streams instance.
These REST binding classes can be obtained as follows:

	Job - tester.submission_result.job

	Instance - tester.submission_result.job.get_instance()

	StreamsConnection - tester.streams_connection

Simple example of checking the job is healthy:

import unittest
from streamsx.topology.topology import Topology
from streamsx.topology.tester import Tester

class TestLocalCheckExample(unittest.TestCase):
 def setUp(self):
 Tester.setup_distributed(self)

 def test_job_is_healthy(self):
 topology = Topology()
 s = topology.source(['Hello', 'World'])

 self.tester = Tester(topology)
 self.tester.tuple_count(s, 2)

 # Add the local check
 self.tester.local_check = self.local_checks

 # Run the test
 self.tester.test(self.test_ctxtype, self.test_config)

 def local_checks(self):
 job = self.tester.submission_result.job
 self.assertEqual('healthy', job.health)

Warning

A local check must not cancel the job (application under test).

Warning

A local check is not supported in standalone mode.

	Parameters

	callable – Callable object.

	
static minimum_streams_version(test, required_version)

	Checks test setup matches a minimum required IBM Streams version.

	Parameters

	
	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	required_version (str) – VRMF of the minimum version the test requires. Examples are '4.3', 4.2.4.

	Returns

	True if the setup fulfills the minimum required version, false otherwise.

	Return type

	bool

	
static require_streams_version(test, required_version)

	Require a test has minimum IBM Streams version.

Skips the test if the test’s setup is not at the required
minimum IBM Streams version.

	Parameters

	
	test (unittest.TestCase) – Test case setup to run IBM Streams tests.

	required_version (str) – VRMF of the minimum version the test requires. Examples are '4.3', 4.2.4.

	
resets(minimum_resets=10)

	Create a condition that randomly resets consistent regions.
The condition becomes valid when each consistent region in the
application under test has been reset minimum_resets times
by the tester.

The resets are performed at arbitrary intervals scaled to the
period of the region (if it is periodically triggered).

Note

A region is reset by initiating a request though the Job Control Plane. The reset is not driven by any injected failure, such as a PE restart.

	Parameters

	minimum_resets (int) – Minimum number of resets for each region.

New in version 1.11.

	
run_for(duration)

	Run the test for a minimum number of seconds.

Creates a test wide condition that becomes valid when the
application under test has been running for duration seconds.
Maybe be called multiple times, the test will run as long as the maximum value provided.

Can be used to test applications without any externally visible
streams, or streams that do not have testable conditions. For
example a complete application may be tested by runnning it for
for ten minutes and use local_check() to test
any external impacts, such as messages published to a
message queue system.

	Parameters

	duration (float) – Minimum number of seconds the test will run for.

	
static setup_distributed(test, verbose=None)

	Set up a unittest.TestCase to run tests using IBM Streams distributed mode.

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config - Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

Returns: None

Cloud Pak for Data integrated instance configuration

These environment variables define how the test is built and submitted.

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the test as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Cloud Pak for Data standalone instance configuration

These environment variables define how the test is built and submitted.

	STREAMS_BUILD_URL - Endpoint for the Streams build service.

	STREAMS_REST_URL - Endpoint for the Streams SWS (REST) service.

	STREAMS_USERNAME - (optional) User name to submit the test as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Streams 4.2 & 4.3 instance configuration

Requires a local IBM Streams install define by the STREAMS_INSTALL
environment variable. If STREAMS_INSTALL is not set then the
test is skipped.

The Streams instance to use is defined by the environment variables:

	STREAMS_ZKCONNECT - Zookeeper connection string (optional)

	STREAMS_DOMAIN_ID - Domain identifier

	STREAMS_INSTANCE_ID - Instance identifier

The user used to submit and monitor the job is set by the
optional environment variables:

	STREAMS_USERNAME - User name defaulting to streamsadmin.

	STREAMS_PASSWORD - User password defaulting to passw0rd.

The defaults match the setup for testing on a IBM Streams Quick
Start Edition (QSE) virtual machine.

Warning

streamtool is used to submit the job and requires that streamtool does not prompt for authentication. This is achieved by using streamtool genkey.

See also

Generating authentication keys for IBM Streams [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html]

	
static setup_standalone(test, verbose=None)

	Set up a unittest.TestCase to run tests using IBM Streams standalone mode.

Requires a local IBM Streams install define by the STREAMS_INSTALL
environment variable. If STREAMS_INSTALL is not set, then the
test is skipped.

A standalone application under test will run until a condition
fails or all the streams are finalized or when the
run_for() time (if set) elapses.
Applications that include infinite streams must include set a
run for time using run_for() to ensure the test completes

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config- Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

Returns: None

	
static setup_streaming_analytics(test, service_name=None, force_remote_build=False, verbose=None)

	Set up a unittest.TestCase to run tests using Streaming Analytics service on IBM Cloud.

The service to use is defined by:

	VCAP_SERVICES environment variable containing streaming_analytics entries.

	service_name which defaults to the value of STREAMING_ANALYTICS_SERVICE_NAME environment variable.

If VCAP_SERVICES is not set or a service name is not defined, then the test is skipped.

Two attributes are set in the test case:

	test_ctxtype - Context type the test will be run in.

	test_config - Test configuration.

	Parameters

	
	test (unittest.TestCase) – Test case to be set up to run tests using Tester

	service_name (str) – Name of Streaming Analytics service to use. Must exist as an
entry in the VCAP services. Defaults to value of STREAMING_ANALYTICS_SERVICE_NAME environment variable.

	force_remote_build (bool) – Force use of the Streaming Analytics build service. If false and STREAMS_INSTALL is set then a local build will be used if the local environment is suitable for the service, otherwise the Streams application bundle is built using the build service.

	verbose (bool) – If true then the streamsx.topology.test logger is configured at DEBUG level with output sent to standard error.

If run with Python 2 the test is skipped,.

Returns: None

	
test(ctxtype, config=None, assert_on_fail=True, username=None, password=None, always_collect_logs=False)

	Test the topology.

Submits the topology for testing and verifies the test conditions are met and the job remained healthy through its execution.

The submitted application (job) is monitored for the test conditions and
will be canceled when all the conditions are valid or at least one failed.
In addition if a local check was specified using local_check() then
that callable must complete before the job is cancelled.

The test passes if all conditions became valid and the local check callable (if present) completed without
raising an error.

The test fails if the job is unhealthy, any condition fails or the local check callable (if present) raised an exception.
In the event that the test fails when submitting to the STREAMING_ANALYTICS_SERVICE context, the application logs are retrieved as
a tar file and are saved to the current working directory. The filesystem path to the application logs is saved in the
tester’s result object under the application_logs key, i.e. tester.result[‘application_logs’]

	Parameters

	
	ctxtype (str) – Context type for submission.

	config – Configuration for submission.

	assert_on_fail (bool) – True to raise an assertion if the test fails, False to return the passed status.

	username (str) – Deprecated

	password (str) – Deprecated

	always_collect_logs (bool) – True to always collect the console log and PE trace files of the test.

	
result

	The result of the test. This can contain exit codes, application log paths, or other relevant test information.

	
submission_result

	Result of the application submission from submit().

	
streams_connection

	Connection object that can be used to interact with the REST API of
the Streaming Analytics service or instance.

	Type

	StreamsConnection

	Returns

	True if test passed, False if test failed if assert_on_fail is False.

	Return type

	bool

Deprecated since version 1.8.3: username and password parameters. When required for
 a distributed test use the environment variables
 STREAMS_USERNAME and STREAMS_PASSWORD to define
 the Streams user.

	
tuple_check(stream, checker)

	Check each tuple on a stream.

For each tuple t on stream checker(t) is called.

If the return evaluates to False then the condition fails.
Once the condition fails it can never become valid.
Otherwise the condition becomes or remains valid. The first
tuple on the stream makes the condition valid if the checker
callable evaluates to True.

The condition can be combined with tuple_count() with
exact=False to test a stream map or filter with random input data.

An example of combining tuple_count and tuple_check to test a filter followed
by a map is working correctly across a random set of values:

def rands():
 r = random.Random()
 while True:
 yield r.random()

class TestFilterMap(unittest.testCase):
Set up omitted

 def test_filter(self):
 # Declare the application to be tested
 topology = Topology()
 r = topology.source(rands())
 r = r.filter(lambda x : x > 0.7)
 r = r.map(lambda x : x + 0.2)

 # Create tester and assign conditions
 tester = Tester(topology)
 # Ensure at least 1000 tuples pass through the filter.
 tester.tuple_count(r, 1000, exact=False)
 tester.tuple_check(r, lambda x : x > 0.9)

 # Submit the application for test
 # If it fails an AssertionError will be raised.
 tester.test(self.test_ctxtype, self.test_config)

	Parameters

	
	stream (Stream) – Stream to be tested.

	checker (callable) – Callable that must evaluate to True for each tuple.

	
tuple_count(stream, count, exact=True)

	Test that a stream contains a number of tuples.

If exact is True, then condition becomes valid when count
tuples are seen on stream during the test. Subsequently if additional
tuples are seen on stream then the condition fails and can never
become valid.

If exact is False, then the condition becomes valid once count
tuples are seen on stream and remains valid regardless of
any additional tuples.

	Parameters

	
	stream (Stream) – Stream to be tested.

	count (int) – Number of tuples expected.

	exact (bool) – True if the stream must contain exactly count
tuples, False if the stream must contain at least count tuples.

	Returns

	stream

	Return type

	Stream

streamsx.topology.tester_runtime

Runtime tester functionality.

Overview

Module containing runtime functionality for
streamsx.topology.tester.

When test is executed any specified Condition instances
are executed in the context of the application under test (and
not the unittest class instance). This module separates out
the runtime execution code from the test definition module
tester.

Module contents

Classes

	Condition

	A condition for testing.

	
class streamsx.topology.tester_runtime.Condition(name=None)

	Bases: object

A condition for testing.

	Parameters

	name (str) – Condition name, must be unique within the tester.

streamsx.ec

Access to the IBM Streams execution context.

Overview

This module (streamsx.ec) provides access to the execution
context when Python code is running in a Streams application.

A Streams application runs distributed or standalone.

Distributed

Distributed is used when an application is submitted
to the Streaming Analytics service on IBM Cloud
or a IBM Streams distributed instance.

With distributed a running application is a job that
contains one or more processing elements (PEs). A PE
corresponds to a Linux operating system process.
The PEs in a job may be distributed across the
resources (hosts) in the Streams instance.

Standalone

Standalone is a mode where the complete application is run
as a single PE (process) outside of a Streams instance.

Standalone is typically used for ad-hoc testing of an application.

Application log and trace

IBM Streams provides application trace and log services.

Application log

The Streams application log service is for application logging, where logging is defined as the recording of serviceability information pertaining to application or operator events. The purpose of logging is to provide an administrator with enough information to do problem determination for items they can potentially control. In general, very few events are logged in the normal running scenario of an application or operator. Events pertinent to the failure or partial failure of application runtime scenarios should be logged.

When running in distributed or standalone the com.ibm.streams.log logger has a handler that records messages to the Streams application log service. The level of the logger and its handler are set to the configured application log level at PE start up.

This logger and handler discard any message with level below INFO (20).

Python application code can log a message suitable for an administrator by using
the com.ibm.streams.log logger or a child logger that has logger.propagate evaulating to True. Example of logging a file exception:

try:
 import numpy
except ImportError as e:
 logging.getLogger('com.ibm.streams.log').error(e)
 raise

Application code must not modify the com.ibm.streams.log logger, if additional handlers or different levels are required a child logger should be used.

Application trace

The Streams application trace service is for application tracing, where tracing is defined as the recording of application or operator internal events and data. The purpose of tracing is to allow application or operator developers to debug their applications or operators.

When running in distributed or standalone the root logger has a handler that records messages to the Streams application trace service. The level of the logger and its handler are set to the configured application trace level at PE start up.

Python application code can trace a message using
the root logger or a child logger that has logger.propagate evaulating to True. Example of logging a trace message:

trace = logging.getLogger(__name__)

...

 trace.info("Threshold set to %f", val)

Any existing logging performed by modules will automatically become
Streams trace messages if the application is using the logging package.

Application code must not modify the root logger, if additional handlers or different levels are required a child logger should be used.

Execution Context

This module (streamsx.ec) provides access to the execution
context when Python code is running in a Streams application.

	Access is only supported when running:
	
	Streams 4.2 or later

This module may be used by Python functions or classes used
in a Topology or decorated SPL operators.

Most functionality is only available when a Python class is
being invoked in a Streams application.

Changed in version 1.9: Support for Python 2.7

Module contents

Functions

	channel

	Return the parallel region global channel number obj is executing in.

	domain_id

	Return the instance identifier.

	get_application_configuration

	Get a named application configuration.

	get_application_directory

	Get the application directory.

	instance_id

	Return the instance identifier.

	is_active

	Tests is code is active within a IBM Streams execution context.

	is_standalone

	Is the execution context standalone.

	job_id

	Return the job identifier.

	local_channel

	Return the parallel region local channel number obj is executing in.

	local_max_channels

	Return the local maximum number of channels for the parallel region obj is executing in.

	max_channels

	Return the global maximum number of channels for the parallel region obj is executing in.

	pe_id

	Return the PE identifier.

	shutdown

	Return the processing element (PE) shutdown event.

Classes

	CustomMetric

	Create a custom metric.

	MetricKind

	Enumeration for the kind of a metric.

	
streamsx.ec.is_active()

	Tests is code is active within a IBM Streams execution context.

Returns a true value when called from within a
IBM Streams distributed job or standalone execution.

Can be used to only run code required at runtime, such as importing
a module that is only needed at runtime and not topology declaration time.

	Returns

	True if running in a IBM Streams context false otherwise.

	Return type

	bool

New in version 1.11.

	
streamsx.ec.shutdown()

	Return the processing element (PE) shutdown event.

The event is set when the PE is being shutdown.
Can be used in source iterators that need to block by sleeping:

Sleep for 60 seconds unless the PE is being shutdown
if streamsx.ec.shutdown.wait(60.0):
 return None

Code must not call set() on the returned event.

	Returns

	Event object representing PE shutdown.

	Return type

	threading.Event

New in version 1.11.

	
streamsx.ec.domain_id()

	Return the instance identifier.

	
streamsx.ec.instance_id()

	Return the instance identifier.

	
streamsx.ec.job_id()

	Return the job identifier.

	
streamsx.ec.pe_id()

	Return the PE identifier.

	
streamsx.ec.is_standalone()

	Is the execution context standalone.

	Returns

	True if the execution context is standalone, False if it is distributed.

	Return type

	boolean

	
streamsx.ec.get_application_directory()

	Get the application directory.

	Returns

	The application directory.

	Return type

	str

New in version 1.7.

	
streamsx.ec.get_application_configuration(name)

	Get a named application configuration.

An application configuration is a named set of securely stored properties
where each key and its value in the property set is a string.

An application configuration object is used to store information that
IBM Streams applications require, such as:

	Database connection data

	Credentials that your applications need to use to access external systems

	Other data, such as the port numbers or URLs of external systems

	Parameters

	name (str) – Name of the application configuration.

	Returns

	Dictionary containing the property names and values for the application configuration.

	Return type

	dict

	Raises

	ValueError – Application configuration does not exist.

	
streamsx.ec.channel(obj)

	Return the parallel region global channel number obj is executing in.

The channel number is in the range of 0 to max_channel(obj).

When the parallel region is not nested this is the same value
as local_channel(obj).

If the parallel region is nested the value will be between
zero and (width*N - 1) where N is the number of times the
parallel region has been replicated due to nesting.

	Parameters

	obj – Instance of a class executing within Streams.

	Returns

	Parallel region global channel number or -1 if not located in a parallel region.

	Return type

	int

	
streamsx.ec.local_channel(obj)

	Return the parallel region local channel number obj is executing in.

The channel number is in the range of zero to local_max_channel(obj).

	Parameters

	obj – Instance of a class executing within Streams.

	Returns

	Parallel region local channel number or -1 if not located in a parallel region.

	Return type

	int

	
streamsx.ec.max_channels(obj)

	Return the global maximum number of channels for the parallel
region obj is executing in.

When the parallel region is not nested this is the same value
as local_max_channels(obj).

If the parallel region is nested the value will be
(width*N) where N is the number of times the
parallel region has been replicated due to nesting.

	Parameters

	obj – Instance of a class executing within Streams.

	Returns

	Parallel region global maximum number of channels or 0 if not located in a parallel region.

	Return type

	int

	
streamsx.ec.local_max_channels(obj)

	Return the local maximum number of channels for the parallel
region obj is executing in.

The maximum number of channels corresponds to the width of the region.

	Parameters

	obj – Instance of a class executing within Streams.

	Returns

	Parallel region local maximum number of channels or 0 if not located in a parallel region.

	Return type

	int

	
class streamsx.ec.MetricKind

	Bases: enum.Enum

Enumeration for the kind of a metric.

The kind of the metric only indicates the behavior of value,
it does not impose any semantics on the value.
The kind is typically used by tooling applications.

	
Counter = 1

	A counter metric observes a value that represents a count of an occurrence.

	
Gauge = 0

	A gauge metric observes a value that is continuously variable with time.

	
Time = 2

	A time metric represents a point in time or duration.
The recommended unit of time is milliseconds, using the standard
epoch of 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970 to represent a point in time.

	
class streamsx.ec.CustomMetric(obj, name, description=None, kind=<MetricKind.Counter: 1>, initialValue=0)

	Bases: object

Create a custom metric.

A custom metric holds a 64 bit signed integer value that represents
a Counter, Gauge or Time metric.

Custom metrics are exposed through the IBM Streams monitoring APIs.

Metric name is unique within the execution context of the
callable obj. Attempts to create multiple metrics with the
same name but different kinds will raise an exception. Multiple
creations of a metric of the same name and kind all refer to
the same metric, the first creation is the only one that will
set the initial value.

The metric’s value is assigned through the value property
and can be modified through += and -=. CustomMetric
can also be converted to an int.

	Parameters

	
	obj – Instance of a class executing within Streams.

	name (str) – Name of the custom metric.

	kind (MetricKind) – Kind of the metric.

	description (str) – Description of the metric.

	initialValue – Initial value of the metric.

Examples:

Simple example used as an instance to Stream.filter:

class MyF:
 def __init__(self, substring):
 self.substring = substring
 pass

 def __call__(self, tuple):
 if self.substring in str(tuple)
 self.my_metric += 1
 return True

 # Create the metric when the it is running
 # in the Streams execution context
 def __enter__(self):
 self.my_metric = ec.CustomMetric(self, "count_" + self.substring)

 # must supply __exit__ if using __enter__
 def __exit__(self, exc_type, exc_val, exc_tb):
 pass

 def __getstate__(self):
 # Remove metric from saved state.
 state = self.__dict__.copy()
 if 'my_metric' in state:
 del state['my_metric']
 return state

 def __setstate__(self, state):
 self.__dict__.update(state)

	
property value

	Current value of the metric.

streamsx.spl.op

Integration of SPL operators.

Invoking SPL Operators

IBM Streams supports Stream Processing Language (SPL),
a domain specific language for streaming analytics.
SPL creates an application by building a graph of operator
invocations. These operators are declared in an SPL toolkit.

SPL streams have a structured schema, such as
tuple<rstring id, timestamp ts, float64 value> for
a sensor reading with a sensor identifier, timestamp and value.
A schema is defined using StreamSchema.

A Python topology application can take advantage of SPL operators
by using streams with structured schemas. A stream of Python objects
can be converted to a structured stream using
map()
with the schema parameter set:

s is stream of Python objects representing a sensor
s = ...

map s to a structured stream using a lambda function
for each sensor reading r a Python tuple is created
with the required values matching the order of the
structured schema.
s2 = s.map(lambda r : (r.sensor_id, r.reading_time, r.reading),
 schema='tuple<rstring id, timestamp ts, float64 value>'

An SPL operator is invoked in an application by creating an
instance of:

	Invoke - Invocation of an arbitrary SPL operator.

	Source - Invocation of an SPL source operator with one input port.

	Map - Invocation of an SPL map operator with one input port and one output port.

	Sink - Invocation of an SPL sink operator with one output port.

In SPL, operator invocation supports a number of clauses that are
supported in Python.

Values for operator clauses

When an operator clause requires a value, the value may be passed as
a constant,
an input attribute (passed using the attribute method of the invocation),
or an arbitrary SPL expression (passed as a string or an Expression).
Because a string is interpreted as an SPL expression, a string constant
should be passed by enclosing the quoted string in outer quotes (for example, ‘“a string constant”’).

SPL is strictly typed so when passing a constant as a value the
value may need to be strongly typed.

	bool, int, float and str values map automatically to SPL boolean, int32, float64 and rstring respectively.

	Enum values map to an operator custom literal using the symbolic name of the value. For custom literals only the symbolic name needs to match a value expected by the operator, the class name and other values are arbitrary.

	The module streamsx.spl.types provides functions to create typed SPL expressions from values.

An optional type may be set to SPL null by passing either Python None or
the value returned from null().

Param clause

Operator parameterization is through operator parameters that configure
and modify the operator for the specific application.

Parameters are passed as a dict containing the parameter names and their values (see Values for operator clauses).

Examples

To invoke a Beacon operator from the SPL standard toolkit producing 100 tuples at the rate of two per second:

schema = StreamSchema('tuple<uint64 seq>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema,
 params = {'iterations':100, 'period':0.5})

To use an IntEnum to pass a custom literal to the Parse operator:

from enum import IntEnum

class DataFormats(IntEnum):
 csv = 0
 txt = 1

...

params['format'] = DataFormats.csv

To create a count parameter of type uint64 for the SPL DeDuplicate operator:

params['count'] = streamsx.spl.types.uint64(20)

After the instance representing the operator
invocation has been created, additional parameters may be added through
the params attribute. If the value is an expression that is only valid
in the context of the operator invocation then the parameter must be added
after the operator invocation has been created.

For example, the Filter operator uses an expression that is usually dependent on the context, filtering tuples based upon their attribute values:

fs = op.Map('spl.relational::Filter', beacon)
fs.params['filter'] = fs.expression('seq % 2ul == 0ul')

Output clause

The operator output clause defines the values of attributes on outgoing
tuples on the operator invocation’s output ports.

When a tuple is submitted by an operator invocation each of its attributes is
set in one of three ways:

	By the operator based upon its state and input tuples. For example, a US ZIP code operator might set the zipcode attribute based upon its lookup of the ZIP code from the address details in the input tuple.

	By the operator implicitly setting output attributes from matching input attributes when those attributes have not been explicitly set elsewhere. Many streaming operators implicitly set output attributes to allow attributes to flow through the operator without any explicit coding. This only occurs when an output attribute is not explicitly set by the operator, or the output clause, and the input tuple has an attribute that matches the output attribute (same name and type, or same name and same type as the underlying type of an output attribute with an optional type). For example, in the US ZIP code operator, if the output tuple included attributes of rstring city, rstring state that matched input attributes, then they would be implicitly copied from the input tuple to the output tuple.

	By an output clause in the operator invocation. In this case the application invoking the operator is explicitly setting attributes using SPL expressions. An operator may provide output functions that return values based upon the operator’s state and input tuples. For example, the US ZIP code operator might provide a ZIPCode() output function rather than explicitly setting an output attribute. Then the application is free to use any attribute name to represent the ZIP code in its output tuple.

In Python an output tuple attribute is set by creating an attribute in the operator invocation instance that is set to a return from the output method.
The attribute value passed to the output method is passed as described in
Values for operator clauses.

For example, invoking an SPL Beacon operator using an output function to set the sequence number of a tuple and an SPL expression to set the timestamp:

schema = StreamSchema('tuple<uint64 seq, timestamp ts>')
beacon = op.Source(topology, 'spl.utility::Beacon', schema, params = {'period':0.1})

Set the seq attribute using an output function provided by Beacon
beacon.seq = beacon.output('IterationCount()')

Set the ts attribute using an SPL function that returns the current time
beacon.ts = beacon.output('getTimestamp()')

See also

	Streams Processing Language (SPL) Reference [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/spl-container.html]
	Reference documentation.

	Developing Streams applications [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.dev.doc/doc/dev-container.html]
	Developing Streams applications.

	Operator invocations [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.ref.doc/doc/operatorinvocations.html]
	Operator invocations from the SPL reference documentation.

Module contents

Functions

	main_composite

	Wrap a main composite invocation as a Topology.

Classes

	Expression

	An SPL expression.

	Invoke

	Declaration of an invocation of an SPL operator in a Topology.

	Map

	Declaration of an invocation of an SPL map operator.

	Sink

	Declaration of an invocation of an SPL sink operator.

	Source

	Declaration of an invocation of an SPL source operator.

	
class streamsx.spl.op.Invoke(topology, kind, inputs=None, schemas=None, params=None, name=None)

	Bases: streamsx._streams._placement._Placement, streamsx.topology.exop.ExtensionOperator

Declaration of an invocation of an SPL operator in a Topology.

An SPL operator has an arbitrary of input ports and
an arbitrary number of output ports. The kind of the
operator places constraints on how many input and output
ports it supports, and potentially the schemas for those
ports. For example, spl.relational::Filter has
a single input port and one or two output ports,
in addition the schemas of the ports must be identical.

When the operator has output ports an instance of
SPLOperator has an outputs attributes which
is a list of Stream instances.

	Parameters

	
	topology (Topology) – Topology that will invoke the operator.

	kind (str) – SPL operator kind, e.g. spl.utility::Beacon.

	inputs – Streams to connect to the operator. If not set or set to
None or an empty collection then the operator has no
input ports. Otherwise a list or tuple of Stream instances
where the number of items is the number of input ports.

	schemas – Schemas of the output ports. If not set or set to
None or an empty collection then the operator has no
outut ports. Otherwise a list or tuple of schemas
where the number of items is the number of output ports.

	params – Operator parameters.

	name – Name of the operator. When None defaults to a name
derived from the operator kind.

	
attribute(stream, name)

	Expression for an input attribute.

An input attribute is an attribute on one of the input
ports of the operator invocation. stream must have been
used to declare this invocation.

	Parameters

	
	stream (Stream) – Stream the attribute is from.

	name (str) – Name of the attribute.

	Returns

	Expression representing the input attribute.

	Return type

	Expression

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
expression(value)

	SPL expression.

An arbitrary expression that is valid in the context of this operator.

	Parameters

	value (str) – Arbitrary SPL expression.

	Returns

	Expression that is valid in the context of this operator.

	Return type

	Expression

	
output(stream, value)

	SPL output port assignment expression.

	Parameters

	
	stream (Stream) – Output stream the assignment is for.

	value (str) – SPL expression used for an output assignment. This can be a string, a constant, or an Expression.

	Returns

	Output assignment expression that is valid as a the context of this operator.

	Return type

	Expression

	
property params

	Parameters for the operator invocation.

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

	
class streamsx.spl.op.Source(topology, kind, schema, params=None, name=None)

	Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL source operator.

Source operators typically bring external data into
a Streams application as a stream. A source operator has
no input ports and a single output port.

An instance of Source has an attribute stream that is
Stream produced by the operator.

This is a utility class that allows simple invocation
of the common case of a operator with a single output port.

	Parameters

	
	topology (Topology) – Topology that will invoke the operator.

	kind (str) – SPL operator kind, e.g. spl.utility::Beacon.

	schema – Schema of the output port.

	params – Operator parameters.

	name – Name of the operator. When None defaults to a generated name.

	
attribute(stream, name)

	Expression for an input attribute.

An input attribute is an attribute on one of the input
ports of the operator invocation. stream must have been
used to declare this invocation.

	Parameters

	
	stream (Stream) – Stream the attribute is from.

	name (str) – Name of the attribute.

	Returns

	Expression representing the input attribute.

	Return type

	Expression

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
expression(value)

	SPL expression.

An arbitrary expression that is valid in the context of this operator.

	Parameters

	value (str) – Arbitrary SPL expression.

	Returns

	Expression that is valid in the context of this operator.

	Return type

	Expression

	
output(value)

	SPL output port assignment expression.

	Parameters

	value (str) – SPL expression used for an output assignment. This can be a string, a constant, or an Expression.

	Returns

	Output assignment expression that is valid as a the context of this operator.

	Return type

	Expression

	
property params

	Parameters for the operator invocation.

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

	
property stream

	Stream produced by the operator invocation.

	Returns

	Stream produced by the operator invocation.

	Return type

	Stream

	
class streamsx.spl.op.Map(kind, stream, schema=None, params=None, name=None)

	Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL map operator.

Map operators have a single input port and single
output port.

An instance of Map has an attribute stream that is
Stream produced by the operator.

This is a utility class that allows simple invocation
of the common case of a operator with a single input stream
and single output stream.

	Parameters

	
	kind (str) – SPL operator kind, e.g. spl.relational::Filter.

	stream – Stream to connect to the operator.

	schema – Schema of the output stream. If set to None then the output schema is the same as the schema of stream.

	params – Operator parameters.

	name – Name of the operator. When None defaults to a generated name.

	
attribute(name)

	Expression for an input attribute.

An input attribute is an attribute on the input
port of the operator invocation.

	Parameters

	name (str) – Name of the attribute.

	Returns

	Expression representing the input attribute.

	Return type

	Expression

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
expression(value)

	SPL expression.

An arbitrary expression that is valid in the context of this operator.

	Parameters

	value (str) – Arbitrary SPL expression.

	Returns

	Expression that is valid in the context of this operator.

	Return type

	Expression

	
output(value)

	SPL output port assignment expression.

	Parameters

	value (str) – SPL expression used for an output assignment. This can be a string, a constant, or an Expression.

	Returns

	Output assignment expression that is valid as a the context of this operator.

	Return type

	Expression

	
property params

	Parameters for the operator invocation.

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

	
property stream

	Stream produced by the operator invocation.

	Returns

	Stream produced by the operator invocation.

	Return type

	Stream

	
class streamsx.spl.op.Sink(kind, stream, params=None, name=None)

	Bases: streamsx.spl.op.Invoke

Declaration of an invocation of an SPL sink operator.

Source operators typically send data on a stream to an
external system. A sink operator has a single input port
and no output ports.

This is a utility class that allows simple invocation
of the common case of a operator with a single input port.

	Parameters

	
	kind (str) – SPL operator kind, e.g. spl.adapter::FileSink.

	input – Stream to connect to the operator.

	params – Operator parameters.

	name – Name of the operator. When None defaults to a generated name.

	
attribute(stream, name)

	Expression for an input attribute.

An input attribute is an attribute on one of the input
ports of the operator invocation. stream must have been
used to declare this invocation.

	Parameters

	
	stream (Stream) – Stream the attribute is from.

	name (str) – Name of the attribute.

	Returns

	Expression representing the input attribute.

	Return type

	Expression

	
property category

	Category for this processing logic.

An arbitrary application label allowing grouping of application
elements by category.

Assign categories based on common function.
For example, database is a common category that you can
use to group all database sinks in an application.

A category is not required and defaults to None meaning
no assigned category.

Streams console supports visualization based upon categories.

	Raises

	TypeError – No directly associated processing logic.

Note

A category has no affect on the execution of the application.

New in version 1.9.

	
colocate(others)

	Colocate this processing logic with others.

Colocating processing logic requires execution in
the same Streams processing element (operating system process).

When a job is submitted Streams may colocate (fuse) processing
logic into the same processing element based upon flow analysis
and current resource usage. This call instructs that this logic
and others must be executed in the same processing element.

	Parameters

	others – Processing logic such as a
Stream
or Sink.
A single value can be passed or an iterable, such
as a list of streams.

	Returns

	This logic.

	Return type

	self

	
expression(value)

	SPL expression.

An arbitrary expression that is valid in the context of this operator.

	Parameters

	value (str) – Arbitrary SPL expression.

	Returns

	Expression that is valid in the context of this operator.

	Return type

	Expression

	
output(stream, value)

	SPL output port assignment expression.

	Parameters

	
	stream (Stream) – Output stream the assignment is for.

	value (str) – SPL expression used for an output assignment. This can be a string, a constant, or an Expression.

	Returns

	Output assignment expression that is valid as a the context of this operator.

	Return type

	Expression

	
property params

	Parameters for the operator invocation.

	
property resource_tags

	Resource tags for this processing logic.

Tags are a mechanism for differentiating and identifying resources that have different physical characteristics or logical uses. For example a resource (host) that has external connectivity for public data sources may be tagged ingest.

Processing logic can be associated with one or more tags to require
running on suitably tagged resources. For example
adding tags ingest and db requires that the processing element
containing the callable that created the stream runs on a host
tagged with both ingest and db.

A Stream that was not created directly with a Python callable
cannot have tags associated with it. For example a stream that
is a union() of multiple streams cannot be tagged.
In this case this method returns an empty frozenset which
cannot be modified.

See https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.admin.doc/doc/tags.html for more details of tags within IBM Streams.

	Returns

	Set of resource tags, initially empty.

	Return type

	set

Warning

If no resources exist with the required tags then job submission will fail.

New in version 1.7.

New in version 1.9: Support for Sink and Invoke.

	
class streamsx.spl.op.Expression(_type, _value)

	Bases: object

An SPL expression.

	
static expression(value)

	Create an SPL expression.

	Parameters

	value – Expression as a string or another Expression. If value is an instance of Expression then a new instance is returned containing the same type and value.

	Returns

	SPL expression from value.

	Return type

	Expression

	
streamsx.spl.op.main_composite(kind, toolkits=None, name=None)

	Wrap a main composite invocation as a Topology.

Provides a bridge between an SPL application (main composite)
and a Topology. Create a Topology that contains just
the invocation of the main composite defined by kind.

The returned Topology may be used like any other topology
instance including job configuration, tester or even addition
of SPL operator invocations or functional transformations.

Note

Since a main composite by definition has no input
or output ports any functionality added to the topology cannot
interact directly with its invocation.

When name is None and no additions or tests are made to the topology
then SPL compilation uses kind directly. Otherwise the main
composite invocation is invoked within a generated main composite.

	Parameters

	
	kind (str) – Kind of the main composite operator invocation. Must be a namespace qualified name.

	toolkits (list[str]) – Optional list of toolkits the main composite depends on.

	name (str) – Invocation name for the main composite.

	Returns

	tuple containing:

	Topology: Topology with main composite invocation.

	Invoke: Invocation of the main composite

	Return type

	tuple

streamsx.spl.types

SPL type definitions.

Overview

SPL is strictly typed, thus when invoking SPL operators
using classes from streamsx.spl.op then any parameters
must use the SPL type required by the operator.

Module contents

Functions

	float32

	Create an SPL float32 value.

	float64

	Create an SPL float64 value.

	int16

	Create an SPL int16 value.

	int32

	Create an SPL int32 value.

	int64

	Create an SPL int64 value.

	int8

	Create an SPL int8 value.

	null

	Return an SPL null.

	rstring

	Create an SPL rstring value.

	uint16

	Create an SPL uint16 value.

	uint32

	Create an SPL uint32 value.

	uint64

	Create an SPL uint64 value.

	uint8

	Create an SPL uint8 value.

Classes

	Timestamp

	SPL native timestamp type with nanosecond resolution.

	
class streamsx.spl.types.Timestamp

	Bases: streamsx.spl.runtime.Timestamp

SPL native timestamp type with nanosecond resolution.

Common usage is to store the seconds and nanoseconds since the Unix Epoch (Jan 1, 1970),
but this is not enforced by the Timestamp class.

Machine identifier is an optional application defined identifier for the machine the timestamp
was created on. It is the responsibility of the application to set the machine identifier
if required. The machine identifier may be used to detect if two timestamps were created on the same machine,
as there may be variations in the clocks on different machines.

A instance can be created by passing seconds, nanoseconds and
optionally machine identifier:

Timestamp with the current time in seconds
discarding any fractional seconds.
ts = Timestamp(time.time(), 0)

Timestamp set to a specific time with a machine identifier
ts = Timestamp(1516500542, 9511447, 4)

A Timestamp is a namedtuple with three fields seconds, nanoseconds
and machine_id.

A Timestamp acts as a datetime.datetime instance (duck typing)
with the exception of:

	time() - returns an int instead of datetime.time

	datetime.datetime operations (+,-,<) are not supported

	string representation (uses Timestamp representation)

	is not an instance of datetime.datetime

The value of the equivalent datetime.datetime is identical to the
instance returned by datetime().

	
seconds

	Seconds since epoch.

	Type

	int

	
nanoseconds

	Nanosecond component.

	Type

	int

	
machine_id

	Optional machine identifier, defaults to zero.

	Type

	int

Warning

Implementation of Timestamp changed with 1.8.3 to be a namedtuple
maintaining the existing class API.

Changed in version 1.14: Timestamp acts as a datetime.datetime.

	
count()

	Return number of occurrences of value.

	
datetime()

	Return the UTC datetime corresponding to the POSIX timestamp.

This is identical to datetime.datetime.utcfromtimestamp(self.time()).
Nanosecond resolution may be lost.

	Returns

	Timestamp converted to a datetime.datetime.

	Return type

	datetime.datetime

	
static from_datetime(dt, machine_id=0)

	Convert a datetime to an SPL Timestamp.

	Parameters

	
	dt (datetime.datetime) – Datetime to be converted.

	machine_id (int) – Machine identifier.

	Returns

	Datetime converted to Timestamp.

	Return type

	Timestamp

	
static from_time(t, machine_id=0)

	Convert seconds since epoch to a Timestamp.

The time argument matches the return from time.time().

	Parameters

	
	t (float) – Time to be converted.

	machine_id (int) – Machine identifier.

	Returns

	Time converted to Timestamp.

	Return type

	Timestamp

New in version 1.8.3.

	
index()

	Return first index of value.

Raises ValueError if the value is not present.

	
property machine_id

	Alias for field number 2

	
property nanoseconds

	Alias for field number 1

	
static now(machine_id=0)

	Timestamp representing the current time.

	Parameters

	machine_id (int) – Machine identifier.

	Returns

	Current time.

	Return type

	Timestamp

New in version 1.8.3.

	
property seconds

	Alias for field number 0

	
time()

	Get the time in seconds since the epoch.

	Returns

	time in seconds since the epoch.

	Return type

	float

	
streamsx.spl.types.int8(value)

	Create an SPL int8 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.int16(value)

	Create an SPL int16 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.int32(value)

	Create an SPL int32 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	Parameters

	value (int) – Value to be types as int32.

	
streamsx.spl.types.int64(value)

	Create an SPL int64 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.uint8(value)

	Create an SPL uint8 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.uint16(value)

	Create an SPL uint16 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.uint32(value)

	Create an SPL uint32 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.uint64(value)

	Create an SPL uint64 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.float32(value)

	Create an SPL float32 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.float64(value)

	Create an SPL float64 value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.rstring(value)

	Create an SPL rstring value.

	Returns

	Expression representing the value.

	Return type

	Expression

	
streamsx.spl.types.null()

	Return an SPL null.

	Returns

	Expression representing an SPL null value.

	Return type

	Expression

New in version 1.10.

streamsx.spl.toolkit

SPL toolkit integration.

Overview

SPL operators are defined by an SPL toolkit. When a Topology
contains invocations of SPL operators, their defining toolkit must
be made known using add_toolkit().

Toolkits shipped with the IBM Streams product under
$STREAMS_INSTALL/toolkits are implictly known and
must not be added through add_toolkit.

Module contents

Functions

	add_toolkit

	Add an SPL toolkit to a topology.

	add_toolkit_dependency

	Add a version dependency on an SPL toolkit to a topology.

	
streamsx.spl.toolkit.add_toolkit(topology, location)

	Add an SPL toolkit to a topology.

	Parameters

	
	topology (Topology) – Topology to include toolkit in.

	location (str) – Location of the toolkit directory.

	
streamsx.spl.toolkit.add_toolkit_dependency(topology, name, version)

	Add a version dependency on an SPL toolkit to a topology.

To specify a range of versions for the dependent toolkits,
use brackets ([]) or parentheses. Use brackets to represent an
inclusive range and parentheses to represent an exclusive range.
The following examples describe how to specify a dependency on a range of toolkit versions:

	[1.0.0, 2.0.0] represents a dependency on toolkit versions 1.0.0 - 2.0.0, both inclusive.

	[1.0.0, 2.0.0) represents a dependency on toolkit versions 1.0.0 or later, but not including 2.0.0.

	(1.0.0, 2.0.0] represents a dependency on toolkits versions later than 1.0.0 and less than or equal to 2.0.0.

	(1.0.0, 2.0.0) represents a dependency on toolkit versions 1.0.0 - 2.0.0, both exclusive.

	Parameters

	
	topology (Topology) – Topology to include toolkit in.

	name (str) – Toolkit name.

	version (str) – Toolkit version dependency.

See also

Toolkit information model file [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/toolkitinformationmodelfile.html]

New in version 1.12.

streamsx.spl.spl

SPL Python primitive operators.

Overview

SPL primitive operators that call a Python function or
class methods are created by decorators provided by this module.

The name of the function or callable class becomes the name of the
operator.

A decorated function is a stateless operator while a decorated class
is an optionally stateful operator.

These are the supported decorators that create an SPL operator:

	@spl.source - Creates a source operator that produces tuples.

	@spl.filter - Creates a operator that filters tuples.

	@spl.map - Creates a operator that maps input tuples to output tuples.

	@spl.for_each - Creates a operator that terminates a stream processing each tuple.

	@spl.primitive_operator - Creates an SPL primitive operator that has an arbitrary number of input and output ports.

Decorated functions and classes must be located in the directory
opt/python/streams in the SPL toolkit. Each module in that directory
will be inspected for operators during extraction. Each module defines
the SPL namespace for its operators by the function spl_namespace,
for example:

from streamsx.spl import spl

def spl_namespace():
 return 'com.example.ops'

@spl.map()
def Pass(*tuple_):
 return tuple_

creates a pass-through operator com.example.ops::Pass.

SPL primitive operators are created by executing the extraction script spl-python-extract against the SPL toolkit. Once created the operators become part
of the toolkit and may be used like any other SPL operator.

Python classes as SPL operators

Overview

Decorating a Python class creates a stateful SPL operator
where the instance fields of the class are the operator’s state. An instance
of the class is created when the SPL operator invocation is initialized
at SPL runtime. The instance of the Python class is private to the SPL
operator and is maintained for the lifetime of the operator.

If the class has instance fields then they are the state of the
operator and are private to each invocation of the operator.

If the __init__ method has parameters beyond the first
self parameter then they are mapped to operator parameters.
Any parameter that has a default value becomes an optional parameter
to the SPL operator. Parameters of the form *args and **kwargs
are not supported.

Warning

Parameter names must be valid SPL identifers,
SPL identifiers start with an ASCII letter or underscore,
followed by ASCII letters, digits, or underscores.
The name also must not be an SPL keyword.

Parameter names suppress and include are reserved.

The value of the operator parameters at SPL operator invocation are passed
to the __init__ method. This is equivalent to creating an instance
of the class passing the operator parameters into the constructor.

For example, with this decorated class producing an SPL source
operator:

@spl.source()
class Range(object):
 def __init__(self, stop, start=0):
 self.start = start
 self.stop = stop

 def __iter__(self):
 return zip(range(self.start, self.stop))

The SPL operator Range has two parameters, stop is mandatory and start is optional, defaulting to zero. Thus the SPL operator may be invoked as:

// Produces the sequence of values from 0 to 99
//
// Creates an instance of the Python class
// Range using Range(100)
//
stream<int32 seq> R = Range() {
 param
 stop: 100;
}

or both operator parameters can be set:

// Produces the sequence of values from 50 to 74
//
// Creates an instance of the Python class
// Range using Range(75, 50)
//
stream<int32 seq> R = Range() {
 param
 start: 50;
 stop: 75;
}

Operator state

Use of a class allows the operator to be stateful by maintaining state in instance
attributes across invocations (tuple processing).

When the operator is in a consistent region or checkpointing then it is serialized using dill. The default serialization may be modified by using the standard Python pickle mechanism of __getstate__ and __setstate__. This is required if the state includes objects that cannot be serialized, for example file descriptors. For details see See https://docs.python.org/3.5/library/pickle.html#handling-stateful-objects .

If the class has __enter__ and __exit__ context manager methods then __enter__ is called after the instance has been deserialized by dill. Thus __enter__ is used to recreate runtime objects that cannot be serialized such as open files or sockets.

Operator initialization & shutdown

Execution of an instance for an operator effectively run in a context manager so that an instance’s __enter__
method is called when the processing element containing the operator is initialized
and its __exit__ method called when the processing element is stopped. To take advantage of this
the class must define both __enter__ and __exit__ methods.

Note

Initialization such as opening files should be in __enter__
in order to support stateful operator restart & checkpointing.

Example of using __enter__ and __exit__ to open and close a file:

import streamsx.ec as ec

@spl.map()
class Sentiment(object):
 def __init__(self, name):
 self.name = name
 self.file = None

 def __enter__(self):
 self.file = open(self.name, 'r')

 def __exit__(self, exc_type, exc_value, traceback):
 if self.file is not None:
 self.file.close()

 def __call__(self):
 pass

When an instance defines a valid __exit__ method then it will be called with an exception when:

	the instance raises an exception during processing of a tuple

	a data conversion exception is raised converting a Python value to an SPL tuple or attribute

If __exit__ returns a true value then the exception is suppressed and processing continues, otherwise the enclosing processing element will be terminated.

Application log and trace

IBM Streams provides application trace and log services which are
accesible through standard Python loggers from the logging module.

See Application log and trace.

Python functions as SPL operators

Decorating a Python function creates a stateless SPL operator.
In SPL terms this is similar to an SPL Custom operator, where
the code in the Python function is the custom code. For
operators with input ports the function is called for each
input tuple, passing a Python representation of the SPL input tuple.
For an SPL source operator the function is called to obtain an iterable
whose contents will be submitted to the output stream as SPL tuples.

Operator parameters are not supported.

An example SPL sink operator that prints each input SPL tuple after
its conversion to a Python tuple:

@spl.for_each()
def PrintTuple(*tuple_):
 "Print each tuple to standard out."
 print(tuple_, flush=True)

Processing SPL tuples in Python

SPL tuples are converted to Python objects and passed to a decorated callable.

Overview

For each SPL tuple arriving at an input port a Python function is called with
the SPL tuple converted to Python values suitable for the function call.
How the tuple is passed is defined by the tuple passing style.

Tuple Passing Styles

	An input tuple can be passed to Python function using a number of different styles:
	
	dictionary

	tuple

	attributes by name not yet implemented

	attributes by position

Dictionary

Passing the SPL tuple as a Python dictionary is flexible
and makes the operator independent of any schema.
A disadvantage is the reduction in code readability
for Python function by not having formal parameters,
though getters such as tuple['id'] mitigate that to some extent.
If the function is general purpose and can derive meaning
from the keys that are the attribute names then **kwargs can be useful.

When the only function parameter is **kwargs
(e.g. def myfunc(**tuple_):) then the passing style is dictionary.

All of the attributes are passed in the dictionary
using the SPL schema attribute name as the key.

Tuple

Passing the SPL tuple as a Python tuple is flexible
and makes the operator independent of any schema
but is brittle to changes in the SPL schema.
Another disadvantage is the reduction in code readability
for Python function by not having formal parameters.
However if the function is general purpose and independent
of the tuple contents *args can be useful.

When the only function parameter is *args
(e.g. def myfunc(*tuple_):) then the passing style is tuple.

All of the attributes are passed as a Python tuple
with the order of values matching the order of the SPL schema.

Attributes by name

(not yet implemented)

Passing attributes by name can be robust against changes
in the SPL scheme, e.g. additional attributes being added in
the middle of the schema, but does require that the SPL schema
has matching attribute names.

When attributes by name is used then SPL tuple attributes
are passed to the function by name for formal parameters.
Order of the attributes and parameters need not match.
This is supported for function parameters of
kind POSITIONAL_OR_KEYWORD and KEYWORD_ONLY.

If the function signature also contains a parameter of the form
**kwargs (VAR_KEYWORD) then any attributes not bound to
formal parameters are passed in its dictionary using the
SPL schema attribute name as the key.

If the function signature also contains an arbitrary argument
list *args then any attributes not bound to formal parameters
or to **kwargs are passed in order of the SPL schema.

If there are only formal parameters any non-bound attributes
are not passed into the function.

Attributes by position

Passing attributes by position allows the SPL operator to
be independent of the SPL schema but is brittle to
changes in the SPL schema. For example a function expecting
an identifier and a sensor reading as the first two attributes
would break if an attribute representing region was added as
the first SPL attribute.

When attributes by position is used then SPL tuple attributes are
passed to the function by position for formal parameters.
The first SPL attribute in the tuple is passed as the first parameter.
This is supported for function parameters of kind POSITIONAL_OR_KEYWORD.

If the function signature also contains an arbitrary argument
list *args (VAR_POSITIONAL) then any attributes not bound
to formal parameters are passed in order of the SPL schema.

The function signature must not contain a parameter of the form
**kwargs (VAR_KEYWORD).

If there are only formal parameters any non-bound attributes
are not passed into the function.

The SPL schema must have at least the number of positional arguments
the function requires.

Selecting the style

For signatures only containing a parameter of the form
*args or **kwargs the style is implicitly defined:

	def f(**tuple_) - dictionary - tuple_ will contain a dictionary of all of the SPL tuple attribute’s values with the keys being the attribute names.

	def f(*tuple_) - tuple - tuple_ will contain all of the SPL tuple attribute’s values in order of the SPL schema definition.

Otherwise the style is set by the style parameter to the decorator,
defaulting to attributes by name. The style value can be set to:

	'name' - attributes by name (the default)

	'position' - attributes by position

Examples

These examples show how an SPL tuple with the schema and value:

tuple<rstring id, float64 temp, boolean increase>
{id='battery', temp=23.7, increase=true}

is passed into a variety of functions by showing the effective Python
call and the resulting values of the function’s parameters.

Dictionary consuming all attributes by **kwargs:

@spl.map()
def f(**tuple_)
 pass
f({'id':'battery', 'temp':23.7, 'increase': True})
tuple_={'id':'battery', 'temp':23.7, 'increase':True}

Tuple consuming all attributes by *args:

@spl.map()
def f(*tuple_)
 pass
f('battery', 23.7, True)
tuple_=('battery',23.7, True)

Attributes by name consuming all attributes:

@spl.map()
def f(id, temp, increase)
 pass
f(id='battery', temp=23.7, increase=True)
id='battery'
temp=23.7
increase=True

Attributes by name consuming a subset of attributes:

@spl.map()
def f(id, temp)
 pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7

Attributes by name consuming a subset of attributes in a different order:

@spl.map()
def f(increase, temp)
 pass
f(temp=23.7, increase=True)
increase=True
temp=23.7

Attributes by name consuming id by name and remaining attributes by **kwargs:

@spl.map()
def f(id, **tuple_)
 pass
f(id='battery', {'temp':23.7, 'increase':True})
id='battery'
tuple_={'temp':23.7, 'increase':True}

Attributes by name consuming id by name and remaining attributes by *args:

@spl.map()
def f(id, *tuple_)
 pass
f(id='battery', 23.7, True)
id='battery'
tuple_=(23.7, True)

Attributes by position consuming all attributes:

@spl.map(style='position')
def f(key, value, up)
 pass
f('battery', 23.7, True)
key='battery'
value=23.7
up=True

Attributes by position consuming a subset of attributes:

@spl.map(style='position')
def f(a, b)
 pass
f('battery', 23.7)
a='battery'
b=23.7

Attributes by position consuming id by position and remaining attributes by *args:

@spl.map(style='position')
def f(key, *tuple_)
 pass
f('battery', 23.7, True)
key='battery'
tuple_=(23.7, True)

In all cases the SPL tuple must be able to provide all parameters
required by the function. If the SPL schema is insufficient then
an error will result, typically an SPL compile time error.

The SPL schema can provide a subset of the formal parameters if the
remaining attributes are optional (having a default).

Attributes by name consuming a subset of attributes with an optional parameter not matched by the schema:

@spl.map()
def f(id, temp, pressure=None)
 pass
f(id='battery', temp=23.7)
id='battery'
temp=23.7
pressure=None

Submission of SPL tuples from Python

The return from a decorated callable results in submission of SPL tuples
on the associated outut port.

	A Python function must return:
	
	None

	a Python tuple

	a Python dictionary

	a list containing any of the above.

None

When None is return then no tuple will be submitted to
the operator output port.

Python tuple

When a Python tuple is returned it is converted to an SPL tuple and
submitted to the output port.

The values of a Python tuple are assigned to an output SPL tuple by position,
so the first value in the Python tuple is assigned to the first attribute
in the SPL tuple:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):
 return (a,b,a+b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple
x is set to: x
y is set to: y
z is set to: x+y

The returned tuple may be sparse, any attribute value in the tuple
that is None will be set to their SPL default or copied from
a matching attribute in the input tuple
(same name and type,
or same name and same type as the underlying type of an output attribute
with an optional type),
depending on the operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):
 return (a,None,a+b)

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: x+y

When a returned tuple has fewer values than attributes in the SPL output
schema the attributes not set by the Python function will be set
to their SPL default or copied from
a matching attribute in the input tuple
(same name and type,
or same name and same type as the underlying type of an output attribute
with an optional type),
depending on the operator kind:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):
 return a,

The SPL output will be:
x is set to: x (explictly set by returned Python tuple)
y is set to: y (set by matching input SPL attribute)
z is set to: 0 (default int32 value)

When a returned tuple has more values than attributes in the SPL output schema then the additional values are ignored:

SPL input schema: tuple<int32 x, float64 y>
SPL output schema: tuple<int32 x, float64 y, float32 z>
@spl.map(style='position')
def myfunc(a,b):
 return (a,b,a+b,a/b)

The SPL output will be:
All values explictly set by returned Python tuple
based on the x,y values from the input tuple
x is set to: x
y is set to: y
z is set to: x+y
#
The fourth value in the tuple a/b = x/y is ignored.

Python dictionary

A Python dictionary is converted to an SPL tuple for submission to
the associated output port. An SPL attribute is set from the
dictionary if the dictionary contains a key equal to the attribute
name. The value is used to set the attribute, unless the value is
None.

If the value in the dictionary is None, or no matching key exists,
then the attribute value is set to its SPL default or copied from
a matching attribute in the input tuple (same name and type,
or same name and same type as the underlying type of an output attribute
with an optional type), depending on the operator kind.

Any keys in the dictionary that do not map to SPL attribute names are ignored.

Python list

When a list is returned, each value is converted to an SPL tuple and
submitted to the output port, in order of the list starting with the
first element (position 0). If the list contains None at an index
then no SPL tuple is submitted for that index.

The list must only contain Python tuples, dictionaries or None. The list
can contain a mix of valid values.

The list may be empty resulting in no tuples being submitted.

Module contents

Functions

	extracting

	Is a module being loaded by spl-python-extract.

	ignore

	Decorator to ignore a Python function.

Classes

	PrimitiveOperator

	Primitive operator super class.

	filter

	Decorator that creates a filter SPL operator from a callable class or function.

	for_each

	Creates an SPL operator with a single input port.

	input_port

	Declare an input port and its processor method.

	map

	Decorator to create a map SPL operator from a callable class or function.

	primitive_operator

	Creates an SPL primitive operator with an arbitrary number of input ports and output ports.

	source

	Create a source SPL operator from an iterable.

	
class streamsx.spl.spl.source(docpy=True)

	Bases: object

Create a source SPL operator from an iterable.
The resulting SPL operator has a single output port.

When decorating a class the class must be iterable
having an __iter__ function. When the SPL operator
is invoked an instance of the class is created
and an iteration is created using iter(instance).

When decoratiing a function the function must have no
parameters and must return an iterable or iteration.
When the SPL operator is invoked the function is called
and an iteration is created using iter(value)
where value is the return of the function.

For each value in the iteration SPL zero or more tuples
are submitted to the output port, derived from the value,
see Submission of SPL tuples from Python.

If the iteration completes then no more tuples
are submitted and a window punctuation mark followed
by final punctuation mark are submitted to the output port.

Example definition:

@spl.source()
class Range(object):
 def __init__(self, stop, start=0):
 self.start = start
 self.stop = stop

 def __iter__(self):
 return zip(range(self.start, self.stop))

Example SPL invocation:

stream<int32 seq> R = Range() {
 param
 stop: 100;
}

If __iter__ or __next__ block then shutdown, checkpointing
or consistent region processing may be delayed. Having __next__
return None (no available tuples) or tuples to submit
will allow such processing to proceed.

A shutdown threading.Event is available through
streamsx.ec.shutdown() which becomes set when a shutdown
of the processing element has been requested. This event my be waited
on to perform a sleep that will terminate upon shutdown.

	Parameters

	docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __iter__ and __next__ can be suppressed
when this decorator wraps a class with context manager
__enter__ and __exit__ methods.

If __exit__ returns a true value when called with an exception
then the exception is suppressed.

Suppressing an exception raised by __iter__ results in the
source producing an empty iteration. No tuples will be submitted.

Suppressing an exception raised by __next__ results in the
source not producing any tuples for that invocation. Processing
continues with a call to __next__.

Data conversion errors of the value returned by __next__ can
also be suppressed by __exit__.
If __exit__ returns a true value when called with the exception
then the exception is suppressed and the value that caused the
exception is not submitted as an SPL tuple.

	
class streamsx.spl.spl.map(style=None, docpy=True)

	Bases: object

Decorator to create a map SPL operator from a callable class or function.

Creates an SPL operator with a single input port and a single
output port. For each tuple on the input port the
callable is called passing the contents of the tuple.

The value returned from the callable results in
zero or more tuples being submitted to the operator output
port, see Submission of SPL tuples from Python.

Example definition:

@spl.map()
class AddSeq(object):
"""Add a sequence number as the last attribute."""
def __init__(self):
 self.seq = 0

def __call__(self, *tuple_):
 id = self.seq
 self.seq += 1
 return tuple_ + (id,)

Example SPL invocation:

stream<In, tuple<uint64 seq>> InWithSeq = AddSeq(In) { }

	Parameters

	
	style – How the SPL tuple is passed into Python callable or function, see Processing SPL tuples in Python.

	docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __call__ can be suppressed when this decorator
wraps a class with context manager __enter__ and __exit__ methods.
If __exit__ returns a true value when called with the exception
then the exception is suppressed and the tuple that caused the
exception is dropped.

Data conversion errors of the value returned by __call__ can
also be suppressed by __exit__.
If __exit__ returns a true value when called with the exception
then the exception is suppressed and the value that caused the
exception is not submitted as an SPL tuple.

	
class streamsx.spl.spl.filter(style=None, docpy=True)

	Bases: object

Decorator that creates a filter SPL operator from a callable class or function.

A filter SPL operator has a single input port and one mandatory
and one optional output port. The schema of each output port
must match the input port. For each tuple on the input port the
callable is called passing the contents of the tuple. if the
function returns a value that evaluates to True then it is
submitted to mandatory output port 0. Otherwise it it submitted to
the second optional output port (1) or discarded if the port is
not specified in the SPL invocation.

	Parameters

	
	style – How the SPL tuple is passed into Python callable or function, see Processing SPL tuples in Python.

	docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Example definition:

@spl.filter()
class AttribThreshold(object):
 """
 Filter based upon a single attribute being
 above a threshold.
 """
 def __init__(self, attr, threshold):
 self.attr = attr
 self.threshold = threshold

 def __call__(self, **tuple_):
 return tuple_[self.attr] > self.threshold:

Example SPL invocation:

stream<rstring id, float64 voltage> Sensors = ...
stream<Sensors> InterestingSensors = AttribThreshold(Sensors) {
 param
 attr: "voltage";
 threshold: 225.0;
}

Exceptions raised by __call__ can be suppressed when this decorator
wraps a class with context manager __enter__ and __exit__ methods.
If __exit__ returns a true value when called with the exception
then the expression is suppressed and the tuple that caused the
exception is dropped.

	
class streamsx.spl.spl.for_each(style=None, docpy=True)

	Bases: object

Creates an SPL operator with a single input port.

A SPL operator with a single input port and no output ports.
For each tuple on the input port the decorated callable
is called passing the contents of the tuple.

Example definition:

@spl.for_each()
def PrintTuple(*tuple_):
"""Print each tuple to standard out."""
 print(tuple_, flush=True)

Example SPL invocation:

() as PT = PrintTuple(SensorReadings) { }

	Parameters

	
	style – How the SPL tuple is passed into Python callable, see Processing SPL tuples in Python.

	docpy – Copy Python docstrings into SPL operator model for SPLDOC.

Exceptions raised by __call__ can be suppressed when this decorator
wraps a class with context manager __enter__ and __exit__ methods.
If __exit__ returns a true value when called with the exception
then the expression is suppressed and the tuple that caused the
exception is ignored.

	
class streamsx.spl.spl.PrimitiveOperator

	Bases: object

Primitive operator super class.
Classes decorated with @spl.primitive_operator must extend
this class if they have one or more output ports. This class
provides the submit method to submit tuples to specified
otuput port.

New in version 1.8.

	
all_ports_ready()

	Notifcation that the operator can submit tuples.

Called when the primitive operator can submit tuples
using submit(). An operator must not submit
tuples until this method is called or until a port
processing method is called.

Any implementation must not block. A typical use
is to start threads that submit tuples.

An implementation must return a value that allows
the SPL runtime to determine when an operator completes.
An operator completes, and finalizes its output ports
when:

	All input ports (if any) have been finalized.

	All background processing is complete.

The return from all_ports_ready defines when
background processing, such as threads started by
all_ports_ready, is complete. The value is one of:

	A value that evaluates to False - No background processing exists.

	A value that evaluates to True - Background processing exists and never completes. E.g. a source operator that processes real time events.

	A callable - Background processing is complete when the callable returns. The SPL runtime invokes the callable once (passing no arguments) when the method returns background processing is assumed to be complete.

For example if an implementation starts a single thread then Thread.join is returned to complete the operator when the thread completes:

def all_ports_ready(self):
 submitter = threading.Thread(target=self._find_and_submit_data)
 submitter.start()
 return submitter.join

def _find_and_submit_data(self):
 ...

	Returns

	Value indicating active background processing.

This method implementation does nothing and returns None.

	
submit(port_id, tuple_)

	Submit a tuple to the output port.

The value to be submitted (tuple_) can be a None (nothing will be submitted),
tuple, dict` or ``list of those types. For details
on how the tuple_ is mapped to an SPL tuple see Submission of SPL tuples from Python.

	Parameters

	
	port_id – Identifier of the port specified in the
output_ports parameter of the @spl.primitive_operator
decorator.

	tuple_ – Tuple (or tuples) to be submitted to the output port.

	
class streamsx.spl.spl.input_port(style=None)

	Bases: object

Declare an input port and its processor method.

Instance methods within a class decorated by
spl.primitive_operator declare
input ports by decorating methods with this decorator.

Each tuple arriving on the input port will result in a call
to the processor method passing the stream tuple converted to
a Python representation depending on the style. The style is
determined by the method signature or the style parameter,
see Processing SPL tuples in Python.

The order of the methods within the class define
the order of the ports, so the first port is
the first method decorated with input_port.

	Parameters

	style – How the SPL tuple is passed into the method, see Processing SPL tuples in Python.

New in version 1.8.

	
class streamsx.spl.spl.primitive_operator(output_ports=None, docpy=True)

	Bases: object

Creates an SPL primitive operator with an arbitrary number of input ports and
output ports.

Input ports are declared by decorating an instance method
with input_port(). The method is the process method
for the input port and is called for each tuple that arrives
at the port. The order of the decorated process methods defines
the order of the ports in the SPL operator, with the first
process method being the first port at index zero.

Output ports are declared by the output_ports parameter which
is set to a list of port identifiers. The port identifiers are
arbitrary but must be hashable. Port identifiers allow the ability
to submit tuples “logically’ rather than through a port index. Typically
a port identifier will be a str or an enum. The size of the list
defines the number of output ports with the first identifier in the list
coresponding to the first output port of the operator at index zero.
If the list is empty or not set then the operator has no output ports.

Tuples are submitted to an output port using submit().

When an operator has output ports it must be a sub-class of
PrimitiveOperator which provides the
submit() method and the ports
ready notification mechanism all_ports_ready().

Example definition of an operator with a single input port and two output ports:

@spl.primitive_operator(output_ports=['MATCH', 'NEAR_MATCH'])
class SelectCustomers(spl.PrimitiveOperator):
 """ Score customers using a model.
 Customers that are a good match are submitted to port 0 ('MATCH')
 while customers that are a near match are submitted to port 1 ('NEAR_MATCH').

 Customers that are not a good or near match are not submitted to any port.
 """
 def __init__(self, match, near_match):
 self.match = match
 self.near_match = near_match

 @spl.input_port()
 def customers(self, **tuple_):
 customer_score = self.score(tuple_)
 if customer_score >= self.match:
 self.submit('MATCH', tuple_)
 elif customer_score >= self.near_match:
 self.submit('NEAR_MATCH', tuple_)

 def score(self, **customer):
 # Actual model scoring omitted
 score = ...
 return score

Example SPL invocation:

(stream<Customers> MakeOffer; stream<Customers> ImproveOffer>) = SelectCustomers(Customers) {
 param
 match: 0.9;
 near_match: 0.8;
}

	Parameters

	
	output_ports (list) – List of identifiers for output ports.

	docpy – Copy Python docstrings into SPL operator model for SPLDOC.

New in version 1.8.

	
streamsx.spl.spl.extracting()

	Is a module being loaded by spl-python-extract.

This can be used by modules defining SPL primitive operators
using decorators such as @spl.map, to avoid
runtime behavior. Typically not importing modules that are
not available locally. The extraction script loads the module
to determine method signatures and thus does not invoke any methods.

For example if an SPL toolkit with primitive operators requires
a package extras and is using opt/python/streams/requirements.txt
to include it, then loading it at extraction time can be avoided by:

from streamsx.spl import spl

def spl_namespace():
 return 'myns.extras'

if not spl.extracting():
 import extras

@spl.map():
def myextras(*tuple_):
 return extras.process(tuple_)

New in version 1.11.

	
streamsx.spl.spl.ignore(wrapped)

	Decorator to ignore a Python function.

If a Python callable is decorated with @spl.ignore
then function is ignored by spl-python-extract.py.

	Parameters

	wrapped – Function that will be ignored.

streamsx.build

REST API bindings for IBM® Streams Cloud Pak for Data build service.

Streams Build REST API

The REST Build API provides programmatic support for creating, submitting and managing Streams builds.
You can use the REST Build API from any application that can establish an HTTPS connection to the server
that is running the build service. The current support includes methods for managing toolkits in the build service
and for retrieving base images for Edge image builds.

Cloud Pak for Data

of_endpoint() or of_service()
is the entry point to using the Streams Build REST API bindings, returning a BuildService.

See also

IBM Streaming Analytics service

Module contents

Classes

	BuildService

	IBM Streams build service.

	
class streamsx.build.BuildService(username=None, password=None, resource_url=None, buildpools_url=None, auth=None)

	Bases: streamsx.rest._AbstractStreamsConnection

IBM Streams build service.

An instance of a BuildService is created using of_endpoint() or of_service().

New in version 1.13.

	
get_base_images()

	Retrieves a list of all installed base images for Edge applications.

	Returns

	List of all base images, None if there are no base images

	Return type

	list of BaseImage

New in version 1.15.

	
get_resources()

	Retrieves a list of all known Streams high-level Build REST resources.

	Returns

	List of all Streams high-level Build REST resources.

	Return type

	list of RestResource

	
get_toolkit(id)

	Retrieves available toolkit matching a specific toolkit ID.

	Parameters

	id (str) – Toolkit identifier to retrieve. This is the name and
version of a toolkit. For sample, com.ibm.streamsx.rabbitmq-1.1.3

	Returns

	Toolkit matching id.

	Return type

	Toolkit

	Raises

	ValueError – No matching toolkit exists.

	
get_toolkits(name=None)

	Retrieves a list of all installed Streams Toolkits.

	Returns

	List of all Toolkit resources.

	Return type

	list of Toolkit

	Parameters

	name (str) – Return toolkits matching name as a regular expression.

	
static of_endpoint(endpoint=None, service_name=None, username=None, password=None, verify=None)

	Connect to a Cloud Pak for Data IBM Streams build service instance.

Two configurations are supported.

Integrated configuration

The build service is bound to a Streams instance and is defined
using the Cloud Pak for Data deployment endpoint (URL) and
the Streams service name.

The endpoint is passed in as endpoint defaulting the the
environment variable CP4D_URL.
An example is https://cp4d_server:31843.

The Streams service name is passed in as service_name defaulting
to the environment variable STREAMS_INSTANCE_ID.

Standalone configuration

A build service is independent of a Streams instance and is defined
using the build service endpoint.

The endpoint is passed in as endpoint defaulting the the
environment variable STREAMS_BUILD_URL.
An example is https://build_service:34679.

No service name is specified thus service_name should be passed
as None or not set.

	Parameters

	
	endpoint (str) – Endpoint defining the build service.

	service_name (str) – Streams instance name for a integrated configuration. This value is ignored for a standalone configuration.

	username (str) – User name to authenticate as. Defaults to the environment variable STREAMS_USERNAME or the operating system identifier if not set.

	password (str) – Password for authentication. Defaults to the environment variable STREAMS_PASSWORD or the operating system identifier if not set.

	verify – SSL verification. Set to False to disable SSL verification. Defaults to SSL verification being enabled.

	Returns

	Connection to Streams build service or None if insufficient configuration was provided.

	Return type

	BuildService

	
static of_service(config)

	Connect to a Cloud Pak for Data IBM Streams build service instance.

The instance is specified in config. The configuration may be code injected from the list of services
in a Jupyter notebook running in ICPD or manually created. The code that selects a service instance by name is:

from icpd_core import ipcd_util
cfg = icpd_util.get_service_details(name='instanceName', instance_type='streams')

buildService = BuildService.of_service(cfg)

SSL host verification is disabled by setting SSL_VERIFY
to False within config before calling this method:

from icpd_core import ipcd_util
cfg = icpd_util.get_service_details(name='instanceName', instance_type='streams')

cfg[ConfigParams.SSL_VERIFY] = False
buildService = BuildService.of_service(cfg)

	Parameters

	config (dict) – Configuration of IBM Streams service instance.

	Returns

	Connection to Streams build service.

	Return type

	BuildService

Note

Only supported when running within the ICPD cluster,
for example in a Jupyter notebook within an ICPD project.

New in version 1.15.

	
property resource_url

	Endpoint URL for IBM Streams REST build API.

	Type

	str

	
upload_toolkit(path)

	Upload a toolkit from a directory in the local filesystem to
the Streams build service.

Multiple versions of a toolkit may be uploaded as long as each has
a unique version. If a toolkit is uploaded with a name and version
matching an existing toolkit, it will not replace the existing
toolkit, and None will be returned.

	Parameters

	path (str) – The path to the toolkit directory in the local filesystem.

	Returns

	The created Toolkit, or None if it was not uploaded.

	Return type

	Toolkit

streamsx.rest

REST API bindings for IBM® Streams & Streaming Analytics service.

Streams REST API

The Streams REST API provides programmatic access to configuration and status information for IBM Streams objects such as domains, instances, and jobs.

IBM Cloud Pak for Data (Streams 5)

Integrated configuration within project

of_service() is the entry point to using the Streams REST API bindings,
returning an Instance.
The configuration required to connect is obtained from ipcd_util.get_service_details passing in the IBM Streams service instance name.

Integrated & standalone configurations

of_endpoint() is the entry point
to using the Streams REST API bindings, returning an Instance.

IBM Streams On-premises (4.2, 4.3)

StreamsConnection is the entry point to using the Streams REST API bindings.
Through its functions and the returned objects status information
can be obtained for items such as instances and jobs.

Streaming Analytics REST API

You can use the Streaming Analytics REST API to manage your service instance and the IBM Streams jobs that are running on the instance. The Streaming Analytics REST API is accessible from IBM Cloud applications that are bound to your service instance or from an application outside of IBM Cloud that is configured with the service instance VCAP information.

StreamingAnalyticsConnection is the entry point to using the
Streaming Analytics REST API. The function get_streaming_analytics() returns a StreamingAnalyticsService instance which is the wrapper around the Streaming Analytics REST API. This API allows functions such as start and stop the service instance.

In addition StreamingAnalyticsConnection extends from StreamsConnection and thus provides access to the Streams REST API for the service instance.

See also

	IBM Streams REST API overview [https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.0/com.ibm.streams.restapi.doc/doc/restapis.html]
	Reference documentation for the Streams REST API.

	Streaming Analytics REST API [https://console.ng.bluemix.net/apidocs/220-streaming-analytics?&language=node#introduction]
	Reference documentation for the Streaming Analytics service REST API.

See also

IBM Streaming Analytics service

Module contents

Classes

	StreamingAnalyticsConnection

	Creates a connection to a running Streaming Analytics service and exposes methods to retrieve the state of the service and its instance.

	StreamsConnection

	Creates a connection to a running distributed IBM Streams instance and exposes methods to retrieve the state of that instance.

	
class streamsx.rest.StreamsConnection(username=None, password=None, resource_url=None, auth=None)

	Bases: streamsx.rest._AbstractStreamsConnection

Creates a connection to a running distributed IBM Streams instance and exposes methods to retrieve the state of
that instance.

Streams maintains information regarding the state of its resources. For example, these resources could include the
currently running Jobs, Views, PEs, Operators, and Domains. The StreamsConnection provides methods to
retrieve that information.

	Parameters

	
	username (str) – Username of an authorized Streams user. If None, the username is taken from the STREAMS_USERNAME environment variable. If the STREAMS_USERNAME environment variable is not set, the default streamsadmin is used.

	password (str) – Password for username If None, the password is taken from the STREAMS_PASSWORD environment variable. If the STREAMS_PASSWORD environment variable is not set, the default passw0rd is used to match the Streams Quick Start edition setup.

	resource_url (str) – Root URL for IBM Streams REST API. If None, the URL is taken from the STREAMS_REST_URL environment variable. If the REST_URL environment variable is not set, then streamtool geturl --api is used to obtain the URL.

Example

>>> resource_url = "https://streamsqse.localdomain:8443/streams/rest/resources"
>>> sc = StreamsConnection("streamsadmin", "passw0rd", resource_url)
>>> sc.session.verify=False # manually disable SSL verification, if needed
>>> instances = sc.get_instances()
>>> jobs_count = 0
>>> for instance in instances:
>>> jobs_count += len(instance.get_jobs())
>>> print("There are {} jobs across all instances.".format(jobs_count))
There are 10 jobs across all instances.

	
session

	Requests session object for making REST calls.

	Type

	requests.Session

	
get_domain(id)

	Retrieves available domain matching a specific domain ID

	Parameters

	id (str) – domain ID

	Returns

	Domain matching id

	Return type

	Domain

	Raises

	ValueError – No matching domain exists.

	
get_domains()

	Retrieves available domains.

	Returns

	List of available domains

	Return type

	list of Domain

	
get_installations()

	Retrieves a list of all known Streams installations.

	Returns

	List of all Installation resources.

	Return type

	list of Installation

	
get_instance(id)

	Retrieves available instance matching a specific instance ID.

	Parameters

	id (str) – Instance identifier to retrieve.

	Returns

	Instance matching id.

	Return type

	Instance

	Raises

	ValueError – No matching instance exists or multiple matching instances exist.

	
get_instances()

	Retrieves available instances.

	Returns

	List of available instances

	Return type

	list of Instance

	
get_resources()

	Retrieves a list of all known Streams high-level REST resources.

	Returns

	List of all Streams high-level REST resources.

	Return type

	list of RestResource

	
property resource_url

	Root URL for IBM Streams REST API

	Type

	str

	
class streamsx.rest.StreamingAnalyticsConnection(vcap_services=None, service_name=None)

	Bases: streamsx.rest.StreamsConnection

Creates a connection to a running Streaming Analytics service and exposes methods
to retrieve the state of the service and its instance.

	Parameters

	
	vcap_services (str, optional) – VCAP services (JSON string or a filename whose content contains a JSON string).
If not specified, it uses the value of VCAP_SERVICES environment variable.

	service_name (str, optional) – Name of the Streaming Analytics service.
If not specified, it uses the value of STREAMING_ANALYTICS_SERVICE_NAME environment variable.

Example

>>> # Assume environment variable VCAP_SERVICES has correct information
>>> sc = StreamingAnalyticsConnection(service_name='Streaming-Analytics')
>>> print(sc.get_streaming_analytics().get_instance_status())
{'plan': 'Standard', 'state': 'STARTED', 'enabled': True, 'status': 'running'}

	
get_domain(id)

	Retrieves available domain matching a specific domain ID

	Parameters

	id (str) – domain ID

	Returns

	Domain matching id

	Return type

	Domain

	Raises

	ValueError – No matching domain exists.

	
get_domains()

	Retrieves available domains.

	Returns

	List of available domains

	Return type

	list of Domain

	
get_installations()

	Retrieves a list of all known Streams installations.

	Returns

	List of all Installation resources.

	Return type

	list of Installation

	
get_instance(id)

	Retrieves available instance matching a specific instance ID.

	Parameters

	id (str) – Instance identifier to retrieve.

	Returns

	Instance matching id.

	Return type

	Instance

	Raises

	ValueError – No matching instance exists or multiple matching instances exist.

	
get_instances()

	Retrieves available instances.

	Returns

	List of available instances

	Return type

	list of Instance

	
get_resources()

	Retrieves a list of all known Streams high-level REST resources.

	Returns

	List of all Streams high-level REST resources.

	Return type

	list of RestResource

	
get_streaming_analytics()

	Returns a StreamingAnalyticsService to allow further interaction with
the Streaming Analytics service.

	Returns

	Object for interacting with the Streaming Analytics service.

	Return type

	StreamingAnalyticsService

	
static of_definition(service_def)

	Create a connection to a Streaming Analytics service.

The single service is defined by service_def which can be one of

	The service credentials copied from the Service credentials page of the service console (not the Streams console). Credentials are provided in JSON format. They contain such as the API key and secret, as well as connection information for the service.

	A JSON object (dict) of the form: { "type": "streaming-analytics", "name": "service name", "credentials": {...} } with the service credentials as the value of the credentials key.

	Parameters

	service_def (dict) – Definition of the service to connect to.

	Returns

	Connection to defined service.

	Return type

	StreamingAnalyticsConnection

	
property resource_url

	Root URL for IBM Streams REST API

	Type

	str

streamsx.rest_primitives

Primitive objects for REST bindings.

Overview

Contains classes representing primitive Streams objects, such as
Instance, Job, PE, etc.

Module contents

Classes

	ActiveService

	Domain or instance service.

	ActiveVersion

	Contains IBM Streams installation information

	ApplicationBundle

	Application bundle tied to an instance.

	ApplicationConfiguration

	An application configuration.

	BaseImage

	A base image used for an Edge image build using the EDGE context type.

	Domain

	IBM Streams domain.

	ExportedStream

	Stream exported stream by a job.

	Host

	Resource in a Streams domain or instance.

	ImportedStream

	Stream imported by a job.

	Installation

	IBM Streams installation.

	Instance

	IBM Streams instance.

	Job

	A running streams application.

	JobGroup

	A job group definition.

	Metric

	Streams custom or system metric.

	Operator

	An operator invocation within a job.

	OperatorConnection

	Connection between operators.

	OperatorInputPort

	Operator input port.

	OperatorOutputPort

	Operator output port.

	PE

	Processing element (PE) within a job.

	PEConnection

	Stream connection between two PEs.

	PublishedTopic

	Metadata for a published topic.

	Resource

	A resource available to a IBM Streams domain.

	ResourceAllocation

	A resource that is allocated to an IBM Streams instance.

	ResourceTag

	Resource tag defined in a Streams domain

	RestResource

	HTTP REST resource identifier.

	StreamingAnalyticsService

	Streaming Analytics service running on IBM Cloud.

	Toolkit

	IBM Streams toolkit.

	View

	View on a stream.

	ViewItem

	A stream tuple in view.

	
class streamsx.rest_primitives.ActiveService(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Domain or instance service.

	
resourceType

	Identifies the REST resource type, which is activeService.

	Type

	str

	
leader

	If True, this service is a standby service.

	Type

	bool

	
processId

	Process ID of this service.

	Type

	str

	
startTime

	Epoch time when this service started.

	Type

	long

	
status

	Status of this service. Some possible values include stopped, running, failed, and
unknown.

	Type

	str

	
type

	Type of this service.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> services = instances.get_active_services()
>>> print(services[0].resourceType)
activeService

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.ActiveVersion(json_active_version)

	Bases: object

Contains IBM Streams installation information

	
architecture

	Hardware architecture on which product is installed.

	Type

	str

	
build_version

	Product build ID.

	Type

	str

	
edition_name

	Product edition.

	Type

	str

	
full_product_version

	Full product version, including any hot fix.

	Type

	str

	
minimum_os_base_version

	Minimum operating system version requirement.

	Type

	str

	
minimum_os_patch_version

	Minimum operating system patch requirement.

	Type

	str

	
product_name

	Product name.

	Type

	str

	
product_version

	Product version.

	Type

	str

	
class streamsx.rest_primitives.ApplicationBundle(_delegator, instance, json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Application bundle tied to an instance.

New in version 1.11.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
submit_job(job_config=None)

	Submit this Streams Application Bundle (sab file) to
its associated instance.

	Parameters

	job_config (JobConfig) – a job configuration overlay

	Returns

	Resulting job instance.

	Return type

	Job

	
class streamsx.rest_primitives.ApplicationConfiguration(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

An application configuration.

Application configurations are used for secure storage and
retrieval of name/value pairs.

An application configuration maintains a set of properties
that an application can access at runtime. These are typically
used to maintain connection endpoint and credentials for sources
and sinks.

	
name

	Name of the configuration.

	Type

	str

	
description

	Description for the configuration.

	Type

	str

	
properties

	Property values stored for the configuration.

	Type

	dict

	
creationTime

	Epoch time when this configuraiton was created.

	Type

	long

	
lastModifiedTime

	Epoch time when this configuration was last modified.

	Type

	long

	
delete()

	Delete this application configuration.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
update(properties=None, description=None)

	Update this application configuration.

To create or update a property provide its key-value
pair in properties.

To delete a property provide its key with the value None
in properties.

	Parameters

	
	properties (dict) – Property values to be updated. If None the properties are unchanged.

	description (str) – Description for the configuration. If None the description is unchanged.

	Returns

	self

	Return type

	ApplicationConfiguration

	
class streamsx.rest_primitives.BaseImage(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

A base image used for an Edge image build using the EDGE context type.

	
buildPool

	REST URL of the build pool that contains the image

	Type

	str

	
id

	identifier in the form registry/prefix/imagename:tag

	Type

	str

	
name

	the image name

	Type

	str

	
prefix

	the image prefix

	Type

	str

	
registry

	the registry where the image is stored

	Type

	str

	
resourceType

	the REST resource type, which is image

	Type

	str

	
restid

	identifier in the form registry/prefix/imagename:tag

	Type

	str

	
tag

	the image tag

	Type

	str

Example

>>> from streamsx.build import BuildService
>>> build_service = BuildService.of_endpoint()
>>> baseimages = build_service.get_base_images()
>>> print(type(baseimages[0]))
<class 'streamsx.rest_primitives.BaseImage'>
>>> print (baseimages[0].resourceType)
image

New in version 1.15.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Domain(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

IBM Streams domain. A domain contains instances that support
running Streams applications as jobs.

	
id

	Unique ID for this domain.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is domain.

	Type

	str

	
creationTime

	Epoch time when this domain was created.

	Type

	long

	
creationuser

	User ID that created this domain.

	Type

	str

	
status

	Status of this domain. Some possible values include running, stopping, stopped,
starting, removing, and unknown.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> domains = sc.get_domains()
>>> print (domains[0].resourceType)
domain

	
get_active_services()

	Get the list of ActiveService elements associated with this domain.

	Returns

	List of ActiveService elements associated with this domain.

	Return type

	list(ActiveService)

	
get_hosts()

	Get the list of Host elements associated with this domain.

	Returns

	List of Host elements associated with this domain.

	Return type

	list(Host)

	
get_instances()

	Get the list of Instance elements associated with this domain.

	Returns

	List of Instance elements associated with this domain.

	Return type

	list(Instance)

	
get_resource_allocations()

	Get the list of ResourceAllocation elements associated with this domain.

	Returns

	List of ResourceAllocation elements associated with this domain.

	Return type

	list(ResourceAllocation)

	
get_resources()

	Get the list of Resource elements associated with this domain.

	Returns

	List of Resource elements associated with this domain.

	Return type

	list(Resource)

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.ExportedStream(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Stream exported stream by a job.

	
resourceType

	Identifies the REST resource type, which is exportedStream.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> print (exportedstreams[0].resourceType)
exportedStream

	
get_operator_output_port()

	Get the output port of this exported stream.

	Returns

	Output port of this exported stream.

	Return type

	OperatorOutputPort

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Host(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Resource in a Streams domain or instance.

	
name

	Configuration name for the IBM Streams resource.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is host.

	Type

	str

	
ipAddress

	IP address for the IBM Streams resource.

	Type

	str

	
processorCount

	Number of processors on the IBM Streams resource.

	Type

	int

	
restrictedTags

	Set of resource tags that processing elements (PEs) must have to run on the IBM
Streams resource.

	Type

	list(str)

	
services

	Name and status of each domain service that is designated to run on the IBM Streams
resource.

	Type

	list(dict)

	
status

	Status of the IBM Streams resource.

	Type

	str

	
tag

	Names of each tag that is assigned to the IBM Streams resource.

	Type

	list(str)

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> domains = sc.get_domains()
>>> hosts = domains[0].get_hosts()
>>> print (hosts[0].resourceType)
host

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.ImportedStream(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Stream imported by a job.

	
resourceType

	Identifies the REST resource type, which is importedStream.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> importedstreams = instances[0].get_imported_streams()
>>> print (importedstreams[0].resourceType)
importedStream

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Installation(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

IBM Streams installation.

	
resourceType

	Identifies the REST resource type, which is installation.

	Type

	str

	
architecture

	Hardware architecture on which product is installed.

	Type

	str

	
buildVersion

	Product build ID.

	Type

	str

	
editionName

	Product edition.

	Type

	str

	
fullProductVersion

	Full product version, including any hot fix.

	Type

	str

	
minimumOSBaseVersion

	Minimum operating system version requirement.

	Type

	str

	
minimumOSPatchVersion

	Minimum operating system patch requirement.

	Type

	str

	
productName

	Product name.

	Type

	str

	
productVersion

	Product version.

	Type

	str

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Instance(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

IBM Streams instance.

	
id

	Unique ID for this instance.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is instance.

	Type

	str

	
creationTime

	Epoch time when this instance was created.

	Type

	long

	
creationuser

	User ID that created this instance.

	Type

	str

	
health

	Summarize status of the jobs in the instance. Some possible values include healthy,
partiallyHealthy, partiallyUnhealthy, unhealthy, and unknown.

	Type

	str

	
owner

	User ID that owns this instance.

	Type

	str

	
startTime

	Epoch time when this instance was started.

	Type

	long

	
status

	Status of this instance. Some possible values include running, failed, stopped, and
unknown.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> print (instances[0].resourceType)
instance

	
create_application_configuration(name, properties, description=None)

	Create an application configuration.

	Parameters

	name (str, optional) – Only return application configurations containing property name that matches name. name can be a

	
get_active_services()

	Get the list of ActiveService elements associated with this instance.

	Returns

	List of ActiveService elements associated with this instance.

	Return type

	list(ActiveService)

	
get_application_configurations(name=None)

	Retrieves application configurations for this instance.

	Parameters

	name (str, optional) – Only return application configurations containing property name that matches name. name can be a
regular expression. If name is not supplied, then all application configurations are returned.

	Returns

	A list of application configurations matching the given name.

	Return type

	list(ApplicationConfiguration)

	
get_domain()

	Get the Streams domain that owns this instance.

	Returns

	Streams domain owning this instance.

	Return type

	Domain

	
get_exported_streams()

	Get the list of ExportedStream elements associated with this instance.

	Returns

	List of ExportedStream elements associated with this instance.

	Return type

	list(ExportedStream)

	
get_hosts()

	Get the list of Host element associated with this instance.

	Returns

	List of Host element associated with this instance.

	Return type

	list(Host)

	
get_imported_streams()

	Get the list of ImportedStream elements associated with this instance.

	Returns

	List of ImportedStream elements associated with this instance.

	Return type

	list(ImportedStream)

	
get_job(id)

	Retrieves a job matching the given id

	Parameters

	id (str) – Job id to match.

	Returns

	Job matching the given id

	Return type

	Job

	Raises

	ValueError – No resource matches given id or multiple resources matching given id

	
get_job_groups(name=None)

	Retrieves job groups defined in this instance.

	Parameters

	name (str, optional) – Only return job groups containing property name that matches name. name can be a
regular expression. If name is not supplied, then all job groups are returned.

	Returns

	A list of job groups matching the given name.

	Return type

	list(JobGroup)

Only supported for Streams 5.0 and later.

New in version 1.13.13.

	
get_jobs(name=None)

	Retrieves jobs running in this instance.

	Parameters

	name (str, optional) – Only return jobs containing property name that matches name. name can be a
regular expression. If name is not supplied, then all jobs are returned.

	Returns

	A list of jobs matching the given name.

	Return type

	list(Job)

Retrieving a list of jobs whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> jobs = instance.get_jobs(name=".*temperatureApplication*")

	
get_operator_connections()

	Get the list of OperatorConnection elements associated with this instance.

	Returns

	List of OperatorConnection elements associated with this instance.

	Return type

	list(OperatorConnection)

	
get_operators(name=None)

	Get the list of Operator elements associated with this instance.

	Parameters

	name (str) – Only return operators matching name, where name can be a regular expression. If
name is not supplied, then all operators for this instance are returned.

	Returns

	List of Operator elements associated with this instance.

	Return type

	list(Operator)

Retrieving a list of operators whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> operators = instance.get_operators(name=".*temperatureSensor*")

Changed in version 1.9: name parameter added.

	
get_pe_connections()

	Get the list of PEConnection elements associated with this instance.

	Returns

	List of PEConnection elements associated with this instance.

	Return type

	list(PEConnection)

	
get_pes()

	Get the list of PE elements associated with this instance resource.

	Returns

	List of PE elements associated with this instance.

	Return type

	list(PE)

	
get_published_topics()

	Get a list of published topics for this instance.

Streams applications publish streams to a a topic that can be subscribed to by other
applications. This allows a microservice approach where publishers
and subscribers are independent of each other.

A published stream has a topic and a schema. It is recommended that a
topic is only associated with a single schema.

Streams may be published and subscribed by applications regardless of the
implementation language. For example a Python application can publish
a stream of JSON tuples that are subscribed to by SPL and Java applications.

	Returns

	List of currently published topics.

	Return type

	list(PublishedTopic)

	
get_resource_allocations()

	Get the list of ResourceAllocation elements associated with this instance.

	Returns

	List of ResourceAllocation elements associated with this instance.

	Return type

	list(ResourceAllocation)

	
get_views(name=None)

	Get the list of View elements associated with this instance.

	Parameters

	
	name (str, optional) – Returns view(s) matching name. name can be a regular expression. If name

	not supplied, then all views associated with this instance are returned. (is) –

	Returns

	List of views matching name.

	Return type

	list(streamsx.rest_primitives.View)

Retrieving a list of views whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instance = sc.get_instances()[0]
>>> view = instance.get_views(name=".*temperatureSensor*")

	
static of_endpoint(endpoint=None, service_name=None, username=None, password=None, verify=None)

	Connect to a Cloud Pak for Data IBM Streams instance.

Two configurations are supported.

Integrated configuration

The Streams instance is defined using the Cloud Pak for Data
deployment endpoint (URL) and the Streams service name.

The endpoint is passed in as endpoint defaulting the the
environment variable CP4D_URL.
An example is https://cp4d_server:31843.

The Streams service name is passed in as service_name defaulting
to the environment variable STREAMS_INSTANCE_ID.

Standalone configuration

The Streams instance is defined using its Streams REST api
endpoint, which is its SWS service.

The endpoint is passed in as endpoint defaulting the the
environment variable STREAMS_REST_URL.
An example is https://streams_sws_service:34679.

No service name is specified thus service_name should be passed
as None or not set.

	Parameters

	
	endpoint (str) – Endpoint defining the Streams instance.

	service_name (str) – Streams instance name for a integrated configuration. This value is ignored for a standalone configuration.

	username (str) – User name to authenticate as. Defaults to the environment variable STREAMS_USERNAME or the operating system identifier if not set.

	password (str) – Password for authentication. Defaults to the environment variable STREAMS_PASSWORD or the operating system identifier if not set.

	verify – SSL verification. Set to False to disable SSL verification. Defaults to SSL verification being enabled.

	Returns

	Connection to Streams instance or None if insufficient configuration was provided.

	Return type

	Instance

New in version 1.13.

	
static of_service(config)

	Connect to an IBM Streams service instance running in Cloud Pak for Data.

The instance is specified in config. The configuration may be code injected from the list of services
in a Jupyter notebook running in ICPD or manually created. The code that selects a service instance by name is:

Two lines are code injected in a Jupyter notebook by selecting the service instance
from icpd_core import ipcd_util
cfg = icpd_util.get_service_details(name='instanceName', instance_type='streams')

instance = Instance.of_service(cfg)

SSL host verification is disabled by setting SSL_VERIFY
to False within config before calling this method:

cfg[ConfigParams.SSL_VERIFY] = False
instance = Instance.of_service(cfg)

	Parameters

	config (dict) – Configuration of IBM Streams service instance.

	Returns

	Instance representing for IBM Streams service instance.

	Return type

	Instance

Note

Only supported when running within the ICPD cluster,
for example in a Jupyter notebook within a ICPD project.

New in version 1.12.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
submit_job(bundle, job_config=None)

	Submit a application to be run in this instance.

	Parameters

	
	bundle (str) – path to a Streams application bundle (sab file)
containing the application to be submitted

	job_config (JobConfig) – a job configuration overlay

	Returns

	Resulting job instance.

	Return type

	Job

New in version 1.11.

	
upload_bundle(bundle)

	Upload a Streams application bundle (sab) to the instance.

Uploading a bundle allows job submission from the returned
ApplicationBundle.

	Parameters

	bundle (str) – path to a Streams application bundle (sab file)
containing the application to be uploaded.

	Returns

	Application bundle representing the
uploaded bundle.

	Return type

	ApplicationBundle

Note

When an instance does not support uploading a bundle the
returned ApplicationBundle represents the local file
bundle tied to this instance. The returned object
may still be used for job submission.

New in version 1.11.

	
class streamsx.rest_primitives.Job(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

A running streams application.

	
id

	job ID.

	Type

	str

	
name

	Name of the job.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is job.

	Type

	str

	
health

	Health indicator for the job. Some possible values for this property include healthy,
partiallyHealthy, partiallyUnhealthy, unhealthy, and unknown.

	Type

	str

	
applicationName

	Name of the streams processing application that this job is running.

	Type

	str

	
jobGroup

	Streams 4.2/4.3 only. Identifies the job group to which this job belongs.

	Type

	str

	
startedBy

	Identifies the user ID that started this job.

	Type

	str

	
status

	Status of this job. Some possible values for this property include canceling, running,
canceled, and unknown.

	Type

	str

	
submitTime

	Epoch time when this job was submitted.

	Type

	long

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> jobs = instances[0].get_jobs()
>>> print (jobs[0].health)
healthy

	
cancel(force=False)

	Cancel this job.

	Parameters

	force (bool, optional) – Forcefully cancel this job.

	Returns

	True if the job was cancelled, otherwise False if an error occurred.

	Return type

	bool

	
get_domain()

	Get the Streams domain that owns this job.

	Returns

	Streams domain that owns this job.

	Return type

	Domain

	
get_hosts()

	Get the list of Host elements associated with this job.

	Returns

	List of Host elements associated with this job.

	Return type

	list(Host)

	
get_instance()

	Get the Streams instance that owns this job.

	Returns

	Streams instance that owns this job.

	Return type

	Instance

	
get_job_group()

	Get the job group associated with this job.

New in version 1.13.13.

	
get_operator_connections()

	Get the list of OperatorConnection elements associated with this job.

	Returns

	List of OperatorConnection elements associated with this job.

	Return type

	list(OperatorConnection)

	
get_operators(name=None)

	Get the list of Operator elements associated with this job.

	Parameters

	name (str) – Only return operators matching name, where name can be a regular expression. If
name is not supplied, then all operators for this job are returned.

	Returns

	List of Operator elements associated with this job.

	Return type

	list(Operator)

Retrieving a list of operators whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> job = instances[0].get_jobs()[0]
>>> operators = job.get_operators(name=".*temperatureSensor*")

Changed in version 1.9: name parameter added.

	
get_pe_connections()

	Get the list of PEConnection elements associated with this job.

	Returns

	List of PEConnection elements associated with this job.

	Return type

	list(PEConnection)

	
get_pes()

	Get the list of PE elements associated with this job.

	Returns

	List of PE elements associated with this job.

	Return type

	list(PE)

	
get_resource_allocations()

	Get the list of ResourceAllocation elements associated with this job.

	Returns

	List of ResourceAllocation elements associated with this job.

	Return type

	list(ResourceAllocation)

	
get_views(name=None)

	Get the list of View elements associated with this job.

	Parameters

	
	name (str, optional) – Returns view(s) matching name. name can be a regular expression. If name

	not supplied, then all views associated with this instance are returned. (is) –

	Returns

	List of views matching name.

	Return type

	list(streamsx.rest_primitives.View)

Retrieving a list of views that contain the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> job = instances[0].get_jobs()[0]
>>> views = job.get_views(name = ".*temperatureSensor*")

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
retrieve_log_trace(filename=None, dir=None)

	Retrieves the application log and trace files of the job
and saves them as a compressed tar file.

An existing file with the same name will be overwritten.

	Parameters

	
	filename (str) – name of the created tar file. Defaults to job_<id>_<timestamp>.tar.gz where id is the job identifier and timestamp is the number of seconds since the Unix epoch, for example job_355_1511995995.tar.gz.

	dir (str) – a valid directory in which to save the archive. Defaults to the current directory.

	Returns

	the path to the created tar file, or None if retrieving a job’s logs is not supported in the version of IBM Streams to which the job is submitted.

	Return type

	str

New in version 1.8.

	
update_operators(job_config)

	Adjust a job configuration while the job is running

	Parameters

	{JobConfig} -- a job configuration overlay (job_config) –

	Returns

	[JSON] – The result of applying the new jobConfig?

	
class streamsx.rest_primitives.Metric(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Streams custom or system metric.

	
name

	Name of this metric.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is metric.

	Type

	str

	
description

	Describes this metric.

	Type

	str

	
lastTimeRetrieved

	Epoch time when the metric was most recently retrieved.

	Type

	str

	
metricKind

	Kind of metric. Some possible values include counter, gauge, time and unknown.

	Type

	str

	
metricType

	Type of metric. Some possible values include system, custom and unknown.

	Type

	str

	
value

	Value for the metric.

	Type

	int

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operators = instances[0].get_operators()
>>> metrics = operators[0].get_metrics()
>>> print (metrics[0].resourceType)
metric

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.OperatorConnection(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Connection between operators.

	
id

	Unique ID of this operator connection within the instance.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is operator.

	Type

	str

	
required

	Indicates whether the connection is required.

	Type

	bool

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operatorconnections = instances[0].get_operator_connections()
>>> print (operatorconnections[0].resourceType)
operatorConnection

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.OperatorInputPort(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Operator input port.

	
name

	Name of this input port.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is operatorInputPort.

	Type

	str

	
indexWithinOperator

	Index of the input port within the operator.

	Type

	int

New in version 1.9.

	
get_connections()

	Get the list of OperatorConnection elements associated with this port.

	Returns

	List of OperatorConnection elements associated with this port.

	Return type

	list(OperatorConnection)

New in version 1.13.

	
get_metrics(name=None)

	Get metrics for this input port.

	Parameters

	name (str, optional) – Only return metrics matching name, where name can be a regular expression. If
name is not supplied, then all metrics for this input port are returned.

	Returns

	List of matching metrics.

	Return type

	list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operator = instances[0].get_operators()[0]
>>> input_port = operator.get_input_ports()[0]
>>> metrics = input_port.get_metrics(name='*temperatureSensor*')

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.OperatorOutputPort(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Operator output port.

	
name

	Name of this output port.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is operatorOutputPort.

	Type

	str

	
indexWithinOperator

	Index of the output port within the operator.

	Type

	int

	
streamName

	Name of the stream that is associated with this output port.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> operatoroutputport = exportedstreams[0].get_operator_output_port()
>>> print (operatoroutputport.resourceType)
operatorOutputPort

	
get_connections()

	Get the list of OperatorConnection elements associated with this port.

	Returns

	List of OperatorConnection elements associated with this port.

	Return type

	list(OperatorConnection)

New in version 1.13.

	
get_metrics(name=None)

	Get metrics for this output port.

	Parameters

	name (str, optional) – Only return metrics matching name, where name can be a regular expression. If
name is not supplied, then all metrics for this output port are returned.

	Returns

	List of matching metrics.

	Return type

	list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> exportedstreams = instances[0].get_exported_streams()
>>> operatoroutputport = exportedstreams[0].get_operator_output_port()
>>> operatoroutputport.get_metrics(name='*temperatureSensor*')

New in version 1.9.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Operator(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

An operator invocation within a job.

	
name

	Operator name.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is operator.

	Type

	str

	
operatorKind

	SPL primitive operator type for this operator.

	Type

	str

	
indexWithinJob

	Index of this operator within the job.

	Type

	int

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operators = instances[0].get_operators()
>>> print (operators[0].resourceType)
operator

	
get_host()

	
	Get resource this operator is currently executing in.
	If the operator is running on an externally
managed resource None is returned.

	Returns

	Resource this operator is running on.

	Return type

	Host

New in version 1.9.

	
get_input_ports()

	Get list of input ports for this operator.

	Returns

	Input ports for this operator.

	Return type

	list(OperatorInputPort)

New in version 1.9.

	
get_job()

	Get the Streams job that owns this operator.

	Returns

	Streams Job owning this operator.

	Return type

	Job

	
get_metrics(name=None)

	Get metrics for this operator.

	Parameters

	name (str, optional) – Only return metrics matching name, where name can be a regular expression. If
name is not supplied, then all metrics for this operator are returned.

	Returns

	List of matching metrics.

	Return type

	list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> operator = instances[0].get_operators()[0]
>>> metrics = op.get_metrics(name='*temperatureSensor*')

	
get_output_ports()

	Get list of output ports for this operator.

	Returns

	Output ports for this operator.

	Return type

	list(OperatorOutputPort)

New in version 1.9.

	
get_pe()

	Get the Streams processing element this operator is executing in.

	Returns

	Processing element for this operator.

	Return type

	PE

New in version 1.9.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.PEConnection(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Stream connection between two PEs.

	
id

	PE connection ID.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is peConnection.

	Type

	str

	
required

	Indicates whether this connection is required.

	Type

	bool

	
status

	Status of this connection. Some possible values include connected, disconnected, and
unknown.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> peconnections = instances.get_pe_connections()
>>> print(peconnections[0].resourceType)
peConnection

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.PE(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

Processing element (PE) within a job.
A processing element hosts one or more operators within a single job.

	
id

	PE ID.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is pe.

	Type

	str

	
health

	Health indicator for this PE. Some possible values include healthy, partiallyHealthy,
partiallyUnhealthy, unhealthy, and unknown.

	Type

	str

	
indexWithinJob

	Index of the PE within the job.

	Type

	int

	
launchCount

	Number of times this PE was started manually or automatically because of failures.

	Type

	int

	
optionalConnections

	Status of optional connections for this PE. Some possible values include connected,
disconnected, partiallyConnected, and unknown.

	Type

	str

	
pendingTracingLevel

	Describes a pending change to the granularity of the trace information that is
stored for this PE. Some possible values include off, error, debug and trace. The value is None,
if no change is pending.

	Type

	str

	
processId

	Operating system process ID for this PE.

	Type

	str

	
relocatable

	Indicates whether this PE can be relocated to a different resource.

	Type

	bool

	
requiredConnections

	Status of the required connections for this PE. Some possible values include
connected, disconnected, partiallyConnected, and unknown.

	Type

	str

	
restartable

	Indicates whether this PE can be restarted.

	Type

	bool

	
status

	Status of this PE.

	Type

	str

	
statusReason

	Additional information for the status of this PE.

	Type

	str

	
tracingLevel

	Granularity of the trace information. Some possible values include off, error, debug
and trace.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> pes = instances.get_pes()
>>> print(pes[0].resourceType)
pe

	
get_host()

	
	Get resource this processing element is currently executing in.
	If the processing element is running on an externally
managed resource None is returned.

	Returns

	Resource this processing element is running on.

	Return type

	Host

New in version 1.9.

	
get_job()

	Get the Streams job that owns this PE.

	Returns

	Streams Job owning this PE.

	Return type

	Job

	
get_metrics(name=None)

	Get metrics for this PE.

	Parameters

	name (str, optional) – Only return metrics matching name, where name can be a regular expression. If
name is not supplied, then all metrics for this PE are returned.

	Returns

	List of matching metrics.

	Return type

	list(Metric)

Retrieving a list of metrics whose name contains the string “temperatureSensor” could be performed as followed
.. rubric:: Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> pe = instances.get_pes()[0]
>>> metrics = pe.get_metrics(name='*temperatureSensor*')

New in version 1.9.

	
get_resource()

	Get resource this processing element is currently executing in.

	Returns

	Resource this processing element is running on.

	Return type

	Host

New in version 1.13.13.

	
get_resource_allocation()

	Get the ResourceAllocation element tance.

	Returns

	Resource allocation used to access information about the resource where this PE is running.

	Return type

	ResourceAllocation

New in version 1.9.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
retrieve_console_log(filename=None, dir=None)

	Retrieves the application console log (standard out and error)
files for this PE and saves them as a plain text file.

An existing file with the same name will be overwritten.

	Parameters

	
	filename (str) – name of the created file. Defaults to pe_<id>_<timestamp>.stdouterr where id is the PE identifier and timestamp is the number of seconds since the Unix epoch, for example pe_83_1511995995.trace.

	dir (str) – a valid directory in which to save the file. Defaults to the current directory.

	Returns

	the path to the created file, or None if retrieving a job’s logs is not supported in the version of streams to which the job is submitted.

	Return type

	str

New in version 1.9.

	
retrieve_trace(filename=None, dir=None)

	Retrieves the application trace files for this PE
and saves them as a plain text file.

An existing file with the same name will be overwritten.

	Parameters

	
	filename (str) – name of the created file. Defaults to pe_<id>_<timestamp>.trace where id is the PE identifier and timestamp is the number of seconds since the Unix epoch, for example pe_83_1511995995.trace.

	dir (str) – a valid directory in which to save the file. Defaults to the current directory.

	Returns

	the path to the created file, or None if retrieving a job’s logs is not supported in the version of streams to which the job is submitted.

	Return type

	str

New in version 1.9.

	
class streamsx.rest_primitives.PublishedTopic(topic, schema)

	Bases: object

Metadata for a published topic.

	
topic

	Published topic

	Type

	str

	
schema

	Schema of topic

	Type

	str

	
class streamsx.rest_primitives.ResourceAllocation(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

A resource that is allocated to an IBM Streams instance.

	
resourceType

	Identifies the REST resource type, which is resourceAllocation.

	Type

	str

	
applicationResource

	Indicates whether this resource is an application resource, which is used to run
streams processing applications.

	Type

	bool

	
schedulerStatus

	Indicates whether this resource is schedulable for the instance.

	Type

	str

	
status

	Status of this resource for the instance.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> allocations = instances.get_resource_allocations()
>>> print(allocations[0].resourceType)
resourceAllocation

	
get_jobs(name=None)

	Retrieves jobs running on this resource in its instance.

	Parameters

	name (str, optional) – Only return jobs containing property name that matches name. name can be a
regular expression. If name is not supplied, then all jobs are returned.

	Returns

	A list of jobs matching the given name.

	Return type

	list(Job)

Note

If applicationResource is False an empty list is returned.

New in version 1.9.

	
get_pes()

	Get the list of PE running on this resource
in its instance.

	Returns

	List of PE running on this resource.

	Return type

	list(PE)

Note

If applicationResource is False an empty list is returned.

New in version 1.9.

	
get_resource()

	Get the Resource of the resource allocation.

	Returns

	Resource for this allocation.

	Return type

	Resource

New in version 1.9.

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.Resource(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

A resource available to a IBM Streams domain.

	
id

	Resource identifier.

	Type

	str

	
displayName

	Resource display name.

	Type

	str

	
ipAddress

	IP address.

	Type

	str

	
status

	Resource status.

	Type

	str

	
tags

	Tags assigned to resource.

	Type

	list[str]

New in version 1.9.

	
get_metrics(name=None)

	Get metrics for this resource.

	Parameters

	name (str, optional) – Only return metrics matching name, where name can be a regular expression. If
name is not supplied, then all metrics for this resource are returned.

	Returns

	List of matching metrics.

	Return type

	list(Metric)

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.ResourceTag(json_resource_tag)

	Bases: object

Resource tag defined in a Streams domain

	
definition_format_properties

	Indicates whether the resource definition consists of one or more
properties.

	Type

	bool

	
description

	Tag description.

	Type

	str

	
name

	Tag name.

	Type

	str

	
properties_definition

	Contains the properties of the resource definition. Only present if
definition_format_properties is True.

	Type

	list(str)

	
reserved

	If True, this tag is defined by IBM Streams, and cannot be modified.

	Type

	bool

	
class streamsx.rest_primitives.RestResource(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

HTTP REST resource identifier.

	
name

	Resource name.

	Type

	str

	
resource

	A string that identifies the URI for the resource.

	Type

	str

Changed in version 1.9: Changed to RestResource from Resource.

	
get_resource()

	Make a request against this REST resource.
:returns: JSON response.
:rtype: dict

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.StreamingAnalyticsService(rest_client, credentials)

	Bases: object

Streaming Analytics service running on IBM Cloud.

	
cancel_job(job_id=None, job_name=None)

	Cancel a running job.

	Parameters

	
	job_id (str, optional) – Identifier of job to be canceled.

	job_name (str, optional) – Name of job to be canceled.

	Returns

	JSON response for the job cancel operation.

	Return type

	dict

	
get_instance_status()

	Get the status the instance for this Streaming Analytics service.

	Returns

	JSON response for the instance status operation.

	Return type

	dict

	
start_instance()

	Start the instance for this Streaming Analytics service.

	Returns

	JSON response for the instance start operation.

	Return type

	dict

	
stop_instance()

	Stop the instance for this Streaming Analytics service.

	Returns

	JSON response for the instance start operation.

	Return type

	dict

	
submit_job(bundle, job_config=None)

	Submit a Streams Application Bundle (sab file) to
this Streaming Analytics service.

	Parameters

	
	bundle (str) – path to a Streams application bundle (sab file)
containing the application to be submitted

	job_config (JobConfig) – a job configuration overlay

	Returns

	
	JSON response from service containing ‘name’ field with unique
	job name assigned to submitted job, or, ‘error_status’ and
‘description’ fields if submission was unsuccessful.

	Return type

	dict

	
class streamsx.rest_primitives.Toolkit(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

IBM Streams toolkit.

	
id

	Unique ID for this instance.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is toolkit.

	Type

	str

	
name

	The name of the toolkit.

	Type

	str

	
version

	The version of the toolkit.

	Type

	str

	
requiredProductVersion

	The earliest version of Streams required by the toolkit.

	Type

	str

	
path

	The full path to the toolkit.

	Type

	str

Example

>>> from streamsx.build import BuildService
>>> build_service = BuildService.of_endpoint()
>>> toolkits = build_service.get_toolkits()
>>> print (toolkits[0].resourceType)
toolkit

New in version 1.13.

	
class Dependency(name, version)

	Bases: object

The name, and range of versions, of a toolkit required by another
toolkit.

	
name

	the name of the required toolkit

	Type

	str

	
version

	the range of versions required of the toolkit

	Type

	str

	
property dependencies

	Find all the dependencies for this toolkit.

	Returns

	List of dependencies of this toolkit. If this
toolkit does not have any dependencies, this will be an empty list.

	Return type

	list(Dependency)

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.ViewItem(json_rep, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

A stream tuple in view.

	
collectionTime

	Epoch time when this viewItem is collected from the stream.

	Type

	long

	
data

	Content of this viewItem.

	Type

	dict

	
resourceType

	Identifies the REST resource type, which is viewItem.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> views = instances[0].get_views()
>>> viewitems = views[0].get_view_items()
>>> print (viewitems[0].resourceType)
viewItem

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
class streamsx.rest_primitives.View(json_view, rest_client)

	Bases: streamsx.rest_primitives._ResourceElement

View on a stream.

	
id

	An unique identifier for the view.

	Type

	str

	
name

	View name.

	Type

	str

	
description

	Description of the view.

	Type

	str

	
resourceType

	Identifies the REST resource type, which is view.

	Type

	str

	
activateOption

	Indicate when the view starts buffering data.

	Type

	str

	
maximumTupleRate

	Maximum Number of tuples at which the view collects per second.

	Type

	int

	
logicalOperatorName

	The logical name of the operator that contains the output port on which the view is
created.

	Type

	str

	
bufferCapacitySeconds

	Buffer size measured in seconds.

	Type

	int

	
bufferCapacityTuples

	Buffer size measured in number of tuples.

	Type

	int

	
bufferCapacityUnits

	Indicates whether the buffer capacity for the view is determined by seconds,
tuples or unknown.

	Type

	str

Example

>>> from streamsx import rest
>>> sc = rest.StreamingAnalyticsConnection()
>>> instances = sc.get_instances()
>>> views = instances[0].get_views()
>>> print (views[0].resourceType)
view

	
display(duration=None, period=2)

	Display a view within a Jupyter or IPython notebook.

Provides an easy mechanism to visualize data on a stream
using a view.

Tuples are fetched from the view and displayed in a table
within the notebook cell using a pandas.DataFrame.
The table is continually updated with the latest tuples from the view.

This method calls start_data_fetch() and will call
stop_data_fetch() when completed if duration is set.

	Parameters

	
	duration (float) – Number of seconds to fetch and display tuples. If None then the display will be updated until stop_data_fetch() is called.

	period (float) – Maximum update period.

Note

A view is a sampling of data on a stream so tuples that
are on the stream may not appear in the view.

Note

Python modules ipywidgets and pandas must be installed
in the notebook environment.

Warning

Behavior when called outside a notebook is undefined.

New in version 1.12.

	
fetch_tuples(max_tuples=20, timeout=None)

	Fetch a number of tuples from this view.

Fetching of data must have been started with
start_data_fetch() before calling this method.

If timeout is None then the returned list will
contain max_tuples tuples. Otherwise if the timeout is reached
the list may contain less than max_tuples tuples.

	Parameters

	
	max_tuples (int) – Maximum number of tuples to fetch.

	timeout (float) – Maximum time to wait for max_tuples tuples.

	Returns

	List of fetched tuples.

	Return type

	list

New in version 1.12.

	
get_domain()

	Get the Streams domain for the instance that owns this view.

	Returns

	Streams domain for the instance owning this view.

	Return type

	Domain

	
get_instance()

	Get the Streams instance that owns this view.

	Returns

	Streams instance owning this view.

	Return type

	Instance

	
get_job()

	Get the Streams job that owns this view.

	Returns

	Streams Job owning this view.

	Return type

	Job

	
get_view_items()

	Get a list of ViewItem elements associated with this view.

	Returns

	List of ViewItem(s) associated with this view.

	Return type

	list(ViewItem)

	
refresh()

	Refresh the resource and update the attributes to reflect the latest status.

	
start_data_fetch()

	Starts a thread that fetches data from the Streams view server.

Each item in the returned Queue represents a single tuple
on the stream the view is attached to.

	Returns

	Queue containing view data.

	Return type

	queue.Queue

Note

This is a queue of the tuples coverted to Python
objects, it is not a queue of ViewItem objects.

	
stop_data_fetch()

	Stops the thread that fetches data from the Streams view server.

spl-python-extract

Overview

Extracts SPL Python primitive operators from decorated
Python classes and functions.

Executing this script against an SPL toolkit creates the SPL
primitive operator meta-data required by the SPL compiler (sc).

Usage

spl-python-extract [-h] -i DIRECTORY [--make-toolkit] [-v]

Extract SPL operators from decorated Python classes and functions.

optional arguments:
 -h, --help show this help message and exit
 -i DIRECTORY, --directory DIRECTORY
 Toolkit directory
 --make-toolkit Index toolkit using spl-make-toolkit
 -v, --verbose Print more diagnostics

SPL Python primitive operators

SPL operators that call a Python function or callable class are created by
decorators provided by the streamsx package.

To create SPL operators from Python functions or classes one or more Python
modules are created in the opt/python/streams directory
of an SPL toolkit.

spl-python-extract is a Python script that creates SPL operators from
Python functions and classes contained in modules under opt/python/streams.

The resulting operators embed the Python runtime to allow stream
processing using Python.

Details on how to implement SPL Python primitive operators see
streamsx.spl.spl.

streamsx-info

Overview

Information about streamsx package and environment.

Prints to standard out information about the streamsx package
and environment variables used to support Python in IBM Streams
and Streaming Analytics service.

A Python warning is issued if a mismatch is detected between
the installed streamsx package and its modules. This is typically
due to having a different version of the modules accessible through
the environment variable PYTHONPATH.

Warning

When using the streamsx package ensure that the environment variable
PYTHONPATH does not include a path ending with
com.ibm.streamsx.topology/opt/python/packages.
The IBM Streams environment configuration script streamsprofile.sh
modifies or sets PYTHONPATH to include the Python support
from the SPL topology toolkit shipped with the product. This was to
support Python before the streamsx package was available. The
recommendation is to unset PYTHONPATH or modify it not to
include the path to the topology toolkit.

Output is subject to change in the order and information displayed.
Intended as an ad-hoc tool to help diagnose issues with streamsx.

Script may also be run as Python module:

python -m streamsx.scripts.info

Usage

usage: streamsx-info [-h]

 Prints support information about streamsx package and environment.

optional arguments:
 -h, --help show this help message and exit

streamsx-runner

Overview

Submits or builds a Streams application to the Streaming Analytics service.

The application to be submitted can be:

	A Python application defined through Topology using the --topology flag.

	An SPL application (main composite) using the --main-composite flag.

	A Streams application bundle (sab file) using the --bundle flag.

Streaming Analytics service

The Streaming Analytics service is defined by:

	Service name - --service-name defaulting to environment variable STREAMING_ANALYTICS_SERVICE_NAME. The service name must exist in the vcap services.

	Vcap services - Environment variable VCAP_SERVICES containing JSON representation of the service definitions or a file name containing the service definitions.

Job submission

Job submission occurs unless --create-bundle is set.

Bundle creation

When -create-bundle is specified with -main-composite or --topology
then a Streams application bundle (sab file) is created.

If environment variable STREAMS_INSTALL is set the the build is local
otherwise the build occurs in the IBM Cloud using the Streaming Analytics
service.

When STREAMS_INSTALL is not set then streamsx-runner can be executed
with no local Streams install.

When compiling an SPL application (--main-composite) then the
path to the application toolkit containing the main composite must
be listed with --toolkits.

Any other required local toolkits must be listed with with --toolkits.

Usage

streamsx-runner [-h] [--service-name SERVICE_NAME] | [--create-bundle]
 (--topology TOPOLOGY | --main-composite MAIN_COMPOSITE | --bundle BUNDLE)
 [--toolkits TOOLKITS [TOOLKITS ...]] [--job-name JOB_NAME]
 [--preload] [--trace {error,warn,info,debug,trace}]
 [--submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...]]
 [--job-config-overlays file]

Execute a Streams application using a Streaming Analytics service.

optional arguments:
 -h, --help show this help message and exit
 --service-name SERVICE_NAME
 Submit to Streaming Analytics service
 --create-bundle Create a bundle (sab file). No job submission occurs.
 --topology TOPOLOGY Topology to call
 --main-composite MAIN_COMPOSITE
 SPL main composite (namespace::composite_name)
 --bundle BUNDLE Streams application bundle (sab file) to submit to
 service

Build options:
 Application build options

 --toolkits TOOLKITS [TOOLKITS ...]
 SPL toolkit path containing the main composite and any
 other required SPL toolkit paths.

Job options:
 Job configuration options

 --job-name JOB_NAME Job name
 --preload Preload job onto all resources in the instance
 --trace {error,warn,info,debug,trace}
 Application trace level
 --submission-parameters SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...], -p SUBMISSION_PARAMETERS [SUBMISSION_PARAMETERS ...]
 Submission parameters as name=value pairs
 --job-config-overlays file
 Path to file containing job configuration overlays
 JSON. Overrides any job configuration set by the
 application.

Submitting to Streaming Analytics service

An application is submitted to a Streaming Analytics service using
--service-name SERVICE_NAME. The named service must exist in the
VCAP services definition pointed to by the VCAP_SERVICES environment
variable.

The application is submitted as source (except --bundle) and compiled into
a Streams application bundle (sab file) using the build service before
being submitted as a running job to the service instance.

See also

Accessing a service

Python applications

To submit a Python application a Python function must be defined
that returns the application (and optionally its configuration)
to be submitted. The fully qualified name of this function is
specified using the --topology flag.

For example, an application can be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
 --topology com.example.apps.sensor_ingester

The function returns one of:

	a Topology instance defining the application

	
	a tuple containing two values, in order:
	
	a Topology instance defining the application

	
	job configuration, one of:
	
	JobConfig instance

	dict corresponding to the configuration object passed into submit()

For example the above function might be defined as:

def _create_sensor_ingester_app():
 topo = Topology('SensorIngesterApp')

 # Application declaration omitted
 ...

 return topo

def sensor_ingester():
 return (_create_sensor_ingester_app(), JobConfig(job_name='SensorIngester'))

Thus when this application is submitted using the sensor_ingester function
it is always submitted with the same job name SensorIngester.

The function must be accessible from the current Python path
(typically through environment variable PYTHONPATH).

SPL applications

The main composite that defines the application is specified using the -main-composite flag specifing the fully namespace qualified name.

Any required local SPL toolkits, including the one containing the main composite, must be indivdually specified by location to the --toolkits flag. Any SPL toolkit that is present on the IBM Cloud service need not be included.

For example, an application that uses the Slack toolkit might be submitted as:

streamsx-runner --service-name Streaming-Analytics-xd \
 --main-composite com.example.alert::SlackAlerter \
 --toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

where $HOME/app/alerters is the location of the SPL application toolkit containing the com.example.alert::SlackAlerter main composite.

Warning

The main composite name must be namespace qualified.
Use of the default namespace for a main composite is not
recommended as it increases the chance of a name clash with
another SPL toolkit.

Streams application bundles

A Streams application bundle is submitted to a service instance using --bundle. The argument to --bundle is a locally accessible file that will be uploaded to the service.

The bundle must have been created on using an IBM Streams install whose architecture and OS version matches the service instance. Currently this is x86_64 and RedHat/CentOS 6 or 7 depending on the service instance.

The --toolkits flag must not be specified when submitting a bundle.

Job options

Job options, such as --job-name, configure the running job.

For --topology job options set as arguments to streamsx-runner override any configuration returned from the function defining the application.

Creating Streams application bundles

--create-bundle uses a local IBM Streams install to attempt to mimic the build that would occur with -topology or --main-composite. Differences between the local environment and the IBM Cloud Streaming Analytics build environment may cause build failures in one and not the other.

This can be used as a mechanism to perform a local test build before using the service, or as a valid mechanism to create bundles for later upload with --bundle.

For example simply changing the --service-name name to --create-bundle perfoms a local build of the same application:

Submit to an Streaming Analytics service
streamsx-runner --service-name Streaming-Analytics-xd \
 --main-composite com.example.alert::SlackAlerter \
 --toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

Build the same application locally
streamsx-runner --create-bundle \
 --main-composite com.example.alert::SlackAlerter \
 --toolkits $HOME/app/alerters $HOME/toolkits/com.ibm.streamsx.slack

streamsx-sc

Overview

SPL compiler for IBM Streams running on IBM Cloud Pak for Data.

streamsx-sc replicates a sub-set of Streams 4.3 sc options.

streamsx-sc is supported for Streams 5.x (Cloud Pak for Data).
A local install of Streams is not required,
simply the installation of the streamsx package. All functionality
is implemented through the Cloud Pak for Data and Streams build service REST apis.

Cloud Pak for Data configuration

Integrated configuration

The Streams instance (and its build service) and authentication are defined through environment variables:

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Standalone configuration

The Streams build service and authentication are defined through environment variables:

	STREAMS_BUILD_URL - Streams build service URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Usage

streamsx-sc [-h] --main-composite name [--spl-path SPL_PATH]
 [--optimized-code-generation] [--no-optimized-code-generation]
 [--prefer-facade-tuples] [--ld-flags LD_FLAGS]
 [--cxx-flags CXX_FLAGS] [--c++std C++STD]
 [--data-directory DATA_DIRECTORY]
 [--output-directory OUTPUT_DIRECTORY] [--disable-ssl-verify]
 [--static-link] [--standalone-application]
 [--set-relax-fusion-relocatability-restartability]
 [--checkpoint-directory path] [--profiling-sampling rate]
 [compile-time-args [compile-time-args ...]]

Options and arguments

	compile-time-args:
	Pass named arguments each in the format name=value to the compiler.
The name cannot contain the character = but otherwise is a free
form string. It matches the name parameter that is specified in calls
that are made to the compile-time argument access functions from
within SPL code. The value can be any string. See Compile-time arguments [https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.3.0/com.ibm.streams.dev.doc/doc/compileargs.html] .

	-M,–main-composite:
	SPL Main composite

	-t,–spl-path:
	Set the toolkit lookup paths. Separate multiple paths
with :. Each path is a toolkit directory or a directory
of toolkit directories.
This path overrides the STREAMS_SPLPATH environment
variable.

	-a,–optimized-code-generation:
	Generate optimized code with less runtime error
checking

	—no-optimized-code-generation:
	Generate non-optimized code with more runtime error
checking. Do not use with the –optimized-code-
generation option.

	-k,–prefer-facade-tuples:
	Generate the facade tuples when it is possible.

	-w,–ld-flags:
	Pass the specified flags to ld while linking occurs.

	-x,–cxx-flags:
	Pass the specified flags to the C++ compiler during
the build.

	–c++std:
	Specify the language level for the underlying C++
compiles.

	–data-directory:
	Specifies the location of the data directory to use.

	–output-directory:
	Specifies a directory where the application artifacts
are placed.

	–disable-ssl-verify:
	Disable SSL verification against the build service

	Deprecated arguments
	Arguments supported by sc but deprecated. They have no affect on compilation.

-s,–static-link

-T,–standalone-application

-O,–set-relax-fusion-relocatability-restartability

-K,–checkpoint-directory

-S,–profiling-sampling

Toolkits

The application toolkit is defined as the working directory of streamsx-sc.

Local toolkits are found through the toolkit path set by –spl-path or environment variable STREAMS_SPLPATH. Local toolkits are included in the build code archive sent to the build service if:

	the toolkit is defined as a dependent of the application toolkit including recursive dependencies of required local toolkits.

	and a toolkit of a higher version within the required dependency range does not exist locally or remotely on the build service.

The toolkit path for the compilation on the build service includes:

	the application toolkit

	local tookits included in the build code archive

	all toolkits uploaded on the Streams build service

	all product toolkits on the Streams build service

The application toolkit and local toolkits included in the build archive are processed prior to the actual compilation by:

	having any Python SPL primitive operators extracted using spl-python-extract

	indexed using spl-make-toolkit

New in version 1.13.

streamsx-service

Overview

Control commands for a Streaming Analytics service.

Usage

streamsx-service [-h] [--service-name SERVICE_NAME] [--full-response]
 {start,status,stop} ...

Control commands for a Streaming Analytics service.

positional arguments:
 {start,status,stop} Supported commands
 start Start the service instance
 status Get the service status.
 stop Stop the instance for the service.

optional arguments:
 -h, --help show this help message and exit
 --service-name SERVICE_NAME
 Streaming Analytics service name
 --full-response Print the full JSON response.

service.py stop [-h] [--force]

optional arguments:
 -h, --help show this help message and exit
 --force Stop the service even if jobs are running.

Controlling a Streaming Analytics service

The Streaming Analytics service to control is defined using
--service-name SERVICE_NAME. If not provided then the
service name is defined by the environment variable
STREAMING_ANALYTICS_SERVICE_NAME.

The named service must exist in the VCAP services definition
pointed to by the VCAP_SERVICES environment variable.

The response from making the control request is printed to
standard out in JSON format. By default a minimal response
is printed including the status of the service and the job count.
The complete response from the service REST API is printed if
the option --full-response is given.

streamsx-streamtool

Overview

Command line interface for IBM Streams running on IBM Cloud Pak for Data.

streamsx-streamtool replicates a sub-set of Streams streamtool
commands focusing on supporting DevOps for streaming applications.

streamsx-streamtool is supported for Streams Cloud Pak for Data (5.x) instances
A local install of Streams is not required,
simply the installation of the streamsx package. All functionality
is implemented through Cloud Pak for Data and Streams REST apis.

Cloud Pak for Data configuration

The Streams instance and authentication are defined through environment variables, the details depend on if the Streams instance is running in integrated or standalone configuration.

Integrated configuration

	CP4D_URL - Cloud Pak for Data deployment URL, e.g. https://cp4d_server:31843.

	STREAMS_INSTANCE_ID - Streams service instance name.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name. Overridden by the --User option.

	STREAMS_PASSWORD - Password for authentication.

Standalone configuration

	STREAMS_REST_URL - Streams SWS service (REST API) URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>

	STREAMS_BUILD_URL - Streams build service (REST API) URL, e.g. when the service is exposed as node port: https://<NODE-IP>:<NODE-PORT>. Required for lstoolkit and rmtoolkit.

	STREAMS_USERNAME - (optional) User name to submit the job as, defaulting to the current operating system user name.

	STREAMS_PASSWORD - Password for authentication.

Usage

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
 [--jobname job-name] [--jobgroup jobgroup-name]
 [--outfile file-name] [--P parameter-name]
 [--User user]
 sab-pathname

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
 [--jobs job-id | --jobnames job-names | --file file-name]
 [--User user]
 [jobid [jobid ...]]

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
 [--jobnames job-names] [--fmt format-spec]
 [--xheaders] [--long] [--showtimestamp]
 [--User user]

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

streamsx-streamtool mkappconfig [-h] [--property name=value]
 [--propfile property-file]
 [--description description] [--User user]
 config-name

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

streamsx-streamtool chappconfig [-h] [--property name=value]
 [--description description] [--User user]
 config-name

streamsx-streamtool getappconfig [-h] [--User user] config-name

streamsx-streamtool lstoolkit [-h]
 (--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
 [--User user]

streamsx-streamtool rmtoolkit [-h]
 (--toolkitid toolkit-id | --toolkitname toolkit-name | --toolkitregex toolkit-regex)
 [--User user]

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

streamsx-streamtool updateoperators [-h] [--jobname job-name]
 [--jobConfig file-name]
 [--parallelRegionWidth parallelRegionName=width]
 [--force] [--User user]
 [jobid]

submitjob

The streamtool submitjob command previews or submits one job.

Description:

A submitted job runs an application that is defined by an application bundle.
Application bundles are created by the Stream Processing Language (SPL)
compiler. A job consists of one or more processing elements (PEs). The PEs are
placed on one or more of the application resources for the instance. The
submission fails if the PE placement constraints can’t be met.

Jobs remain in the system until they are canceled or the instance is stopped.

streamsx-streamtool submitjob [-h] [--jobConfig file-name]
 [--jobname job-name] [--jobgroup jobgroup-name]
 [--outfile file-name] [--P parameter-name]
 [--User user]
 sab-pathname

Options and arguments

	sab-pathname
	Specifies the path name for the application bundle file. If you do
not specify an absolute path, the command seeks the file in the
directory where you ran the command. Alternatively, you can specify
the path name for the application description language (ADL) file if
the application bundle file exists in the same directory.

	-g,–jobConfig:
	Specifies the name of an external file that defines a job
configuration overlay. You can use a job configuration overlay to set
the job configuration when the job is submitted or to change the
configuration of a running job.

	-P,–P:
	Specifies a submission-time parameter and value for the job. You can
specify this option multiple times in the command.

	-J,–jobgroup:
	Specifies the job group. If you do not specify this option, the
command uses the following job group: default.

	—jobname:
	Specifies the name of the job.

	—outfile:
	Specifies the path and file name of the output file in which the
command writes the list of submitted job IDs. The path can be an
absolute or relative path. If you do not specify a path, the file is
created in the directory where you run the command.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

canceljob

The streamtool canceljob command cancels one or more jobs.

This command stops the processing elements (PEs) for the job and removes
knowledge of the jobs and their PEs from the instance. The log files for the
processing elements are scheduled for removal.

If you specify to collect the PE logs before they are removed, the operation
can time out waiting for the termination of PEs. If such a timeout occurs, the
operation fails and the jobs or PEs are still in the system. The canceljob
command can be run again later to cancel them.

You can use the –force option to ignore a PE termination timeout and force the
job to cancel.

streamsx-streamtool canceljob [-h] [--force] [--collectlogs]
 [--jobs job-id | --jobnames job-names | --file file-name]
 [--User user]
 [jobid [jobid ...]]

Options and arguments

	jobid
	Specifies a list of job IDs.

	-f,–file:
	Specifies the file that contains a list of job IDs, one per line.

	-j,–jobs:
	Specifies a list of job IDs, which are delimited by commas.

	—jobnames:
	Specifies a list of job names, which are delimited by commas.

	—collectlogs:
	Specifies to collect the log and trace files for each processing
element that is associated with the job.

	—force:
	Specifies to quickly cancel a job and remove the job from the Streams
data table.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

lsjobs

The streamtool lsjobs command lists the jobs in the instance.

The streamtool lsjobs command provides a health summary for each job. The
health summary is an aggregation of the PE health summaries for the job. If all
of the PEs for a job are reported as healthy, the job is reported as healthy.
Otherwise, the job is reported as not healthy. Use the streamtool lspes command
to determine the health of PEs.

The command also reports the status of each job. For more information about job
states, see the IBM Streams product documentation.

The date and time that the job was submitted are presented in local time with
the iso8601 format: yyyy-mm-ddThh:mm:ss+/-hhmm, where the final hhmm values are
the local offset from UTC. For example: 2010-03-16T13:41:53-0500.

When job selection options are specified, selected jobs must meet all of the
selection criteria.
After a cancel request for a job is processed, this command no longer reports
the job or its processing elements (PEs).

streamsx-streamtool lsjobs [-h] [--jobs job-id] [--users user]
 [--jobnames job-names] [--fmt format-spec]
 [--xheaders] [--long] [--showtimestamp]
 [--User user]

Options and arguments

	-j,–jobs:
	Specifies a list of job IDs, which are delimited by commas.

	—jobnames:
	Specifies a list of job names, which are delimited by commas.

	-u,–users:
	Specifies to select from this list of user IDs, which are delimited
by commas.

	—xheaders:
	Specifies to exclude headings from the report.

	-l,–long:
	Reports launch count, full host names, and all of the operator
instance names for the PEs.

	—fmt:
	Specifies the presentation format. The command supports the following
values:

	%Mf: Multiline record format. One line per field.

	%Nf: Name prefixed field table format. One line per job.

	%Tf: Standard table format, which is the default. One line per job.

	—showtimestamp:
	Specifies to show a time stamp in the output to indicate when the
command was run.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

lsappconfig

The streamtool lsappconfig command lists the available configurations that
enable connections to an external application.

Retrieve a list of configurations for making a connection to an external
application.

streamsx-streamtool lsappconfig [-h] [--fmt format-spec] [--User user]

Options and arguments

	—fmt:
	Specifies the presentation format. The command supports the following
values:

	%Mf: Multiline record format. One line per field.

	%Nf: Name prefixed field table format. One line per cfgname.

	%Tf: Standard table format, which is the default. One line per cfgname.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

mkappconfig

The streamtool mkappconfig command creates a configuration that enables
connection to an external application.

Operators can retrieve the configuration information to make a connection to an
external application, such as an Internet Of Things application. The properties
include items that the application needs at runtime, like connection
information and credentials.

Use this command to register properties or a properties file. Create the
property file using a name=value syntax.

streamsx-streamtool mkappconfig [-h] [--property name=value]
 [--propfile property-file]
 [--description description] [--User user]
 config-name

Options and arguments

	config-name:
	Name of the app config

	—description:
	Specifies a description for the application configuration. The
description can be 1024 characters in length. If the description
contains blank characters, it must be enclosed in single or double
quotation marks. Quotation marks within the description must be
preceded by a backslash ().

	—property:
	Specifies a property name and value pair to add to or change in the
configuration. This option can be specified multiple times and has an
additive effect.

	—propfile:
	Specifies the path to a file that contains a list of application
configuration properties for connecting to an external application.
The properties are listed as name=value pairs, each on a separate
line. Use this option as a way to include multiple configuration
properties when you create an application configuration. Options that
you specify at the command line override values that are specified in
this property file.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

rmappconfig

The streamtool rmappconfig command removes a configuration that enables
connection to an external application.

This command removes a configuration that is used for making a connection to an
external application.

streamsx-streamtool rmappconfig [-h] [--noprompt] [--User user] config-name

Options and arguments

	config-name:
	Name of the app config

	—noprompt:
	Specifies to suppress confirmation prompts.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

chappconfig

The streamtool chappconfig command updates a configuration that enables
connection to an external application.

Use this command to change the configuration properties that are used to make a
connection to an external application, such as an Internet Of Things
application. You can change the values of properties or add new properties.

streamsx-streamtool chappconfig [-h] [--property name=value]
 [--description description] [--User user]
 config-name

Options and arguments

	config-name:
	Name of the app config

	—description:
	Specifies a description for the application configuration. The
description can be 1024 characters in length. If the description
contains blank characters, it must be enclosed in single or double
quotation marks. Quotation marks within the description must be
preceded by a backslash ().

	—property:
	Specifies a property name and value pair to add to or change in the
configuration. This option can be specified multiple times and has an
additive effect.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

getappconfig

The streamtool getappconfig command displays the properties of a configuration
that enables connection to an external application.

This command retrieves the properties and values of a specific configuration
for connecting to an external application.

streamsx-streamtool getappconfig [-h] [--User user] config-name

Options and arguments

	config-name:
	Name of the app config

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

lstoolkit

List toolkits from a build service.

streamsx-streamtool lstoolkit [-h]
 (--all | --id toolkit-id | --name toolkit-name | --regex toolkit-regex)
 [--User user]

Options and arguments

	-a,–all:
	List all toolkits

	-i,–id:
	List a specific toolkit given its toolkit id

	-n,–name:
	List all toolkits with this name

	-r,–regex:
	List all toolkits where the name matches the given regex pattern

rmtoolkit

Remove toolkits from a build service.

streamsx-streamtool rmtoolkit [-h]
 (--id toolkit-id | --name toolkit-name | --regex toolkit-regex)
 [--User user]

Options and arguments

	-i,–id:
	Specifies the id of the toolkit to delete

	-n,–name:
	Remove all toolkits with this name

	-r,–regex:
	Remove all toolkits where the name matches the given regex pattern

uploadtoolkit

Upload a toolkit to a build service.

streamsx-streamtool uploadtoolkit [-h] --path toolkit-path [--User user]

Options and arguments

	-p,–path:
	Specifies the path of the indexed toolkit to upload

New in version 1.13.

updateoperators

Adjust a job configuration while the job is running in order to improve the job performance

streamsx-streamtool updateoperators [-h] [--jobname job-name]
 [--jobConfig file-name]
 [--parallelRegionWidth parallelRegionName=width]
 [--force] [--User user]
 [jobid]

Options and arguments

	jobid:
	Specifies a job ID

	—jobname:
	Specifies the name of the job

	-g,–jobConfig:
	Specifies the name of an external file that defines a job
configuration overlay. You can use a job configuration overlay to set
the job configuration when the job is submitted or to change the
configuration of a running job.

	—parallelRegionWidth:
	Specifies a parallel region name and its width.

	—force:
	Specifies whether to automatically stop the PEs that need to be
stopped.

	-U,–User:
	Specifies an IBM Streams user ID that has authority to run the
command.

IBM Streaming Analytics service

Overview

IBM® Streaming Analytics for IBM Cloud is powered by IBM® Streams, an advanced analytic platform that you can use to ingest, analyze, and correlate information as it arrives from different types of data sources in real time. When you create an instance of the Streaming Analytics service, you get your own instance of IBM® Streams running in IBM® Cloud, ready to run your IBM® Streams applications.

See also

Overview at ibm.com [https://www.ibm.com/cloud/streaming-analytics]

IBM Cloud catalog [https://console.bluemix.net/catalog/services/streaming-analytics]

Streaming Analytics service documentation [https://console.bluemix.net/docs/services/StreamingAnalytics/index.html]

Package support

This streamsx package supports :

	Developing streaming applications in Python that can be submitted to a Streaming Analytics service. See streamsx.topology.topology, STREAMING_ANALYTICS_SERVICE.

	Submitting streaming applications written in Python or SPL to a Streaming Anlaytics service. See Python applications, SPL applications.

	Submitting a pre-compiled Streams application bundle (sab file) Python or SPL to a Streaming Anlaytics service. See Streams application bundles.

	Python bindings to the IBM Streams REST API and the Streaming Analytics REST API. See streamsx.rest

Accessing a service

In order to use a Streaming Analytics service you must have access
to credentials for the service. There are two mechanisms used by
this package, VCAP services and direct use of Streaming Analytics credentials.

VCAP services

This is the format used by Cloud Foundry for bindable services.
The service key for Streaming Analytics service is streaming-analytics,
the value of that key in the VCAP services is a list of accessible services,
each service represented by a separate object.

Each streaming analytics object must have these keys:

	name identifying the name of the service.

	credentials identifying the connection credentials for the service.

Example VCAP services containing two Streaming Analytics services sa-test and sa-prod (with the specific connection details elided):

{
"streaming-analytics": [
{
 "name": "sa-test",
 "credentials":
 {
 "apikey": "...",
 "iam_apikey_description": "Auto generated apikey during resource-key operation for Instance - ...",
 "iam_apikey_name": "auto-generated-apikey-...",
 "iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
 "iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
 "v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_analytics/..."
 }
},
{
 "name": "sa-prod",
 "credentials":
 {
 "apikey": "...",
 "iam_apikey_description": "Auto generated apikey during resource-key operation for Instance - ...",
 "iam_apikey_name": "auto-generated-apikey-...",
 "iam_role_crn": "crn:v1:bluemix:public:iam::::serviceRole:Writer",
 "iam_serviceid_crn": "crn:v1:bluemix:public:iam-identity ...",
 "v2_rest_url": "https://streams-app-service.ng.bluemix.net/v2/streaming_analytics/..."
 }
}
]
}

Note

The specific keys in the credentials may differ depending on the service plan.

See also

https://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES

Cloud Foundry applications

When a Streaming Analytics service is bound to a Cloud Foundry Python
application the environment variable VCAP_SERVICES is
automatically defined and contains a string representation of the
JSON VCAP services information.

Client applications

Client applications are ones that run outside of the IBM Cloud, for
example on a local laptop, or applications that are not bound to a service.

Client applications running must define a valid VCAP services in its JSON format as either:

	In the environment variable VCAP_SERVICES containing a string representation of the JSON VCAP services information.

	In a file containing a string representation of the JSON VCAP services information and have the file’s absolute path in either:

	the environment variable VCAP_SERVICES

	the configuration property VCAP_SERVICES when submitting an application using submit() with context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable VCAP_SERVICES.

The contents of the file must be manually created, the credentials for the credentials key are obtained from the Streaming Analytics manage console. Select the Service Credentials page and then copy the required credentials. You may need to first create credentials. You can an copy the credentials by taking the View credentials action and then clicking the copy to clipboard icon on the right hand side.

Warning

The credential information in VCAP services is in plain text. Ensure that the any file containing the information or setting the environment variable has suitable permissions set. For example only readable by the intended user.

Selecting the service

The Streaming Analyitcs service to use is specifed by its name, the required service much exist in the VCAP service information using the name key.

The name of the service to use is set by:

	the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

	the configuration property SERVICE_NAME when submitting an application using submit() with context type STREAMING_ANALYTICS_SERVICE. This overrides the environment variable STREAMING_ANALYTICS_SERVICE_NAME.

	the --service-name option to streamsx-runner.

Service definition

The Streaming Analytics service to use may be specified solely using its credentials. The credentials are specified:

	with the configuration property SERVICE_DEFINITION when submitting an application using submit() with context type STREAMING_ANALYTICS_SERVICE.

	when using streamsx.rest.StreamingAnalyticsConnection.of_definition() to create a REST connection.

Credentials obtained from the Streaming Analytics manage console. Select the Service Credentials page and then copy the required credentials. You may need to first create credentials. You can an copy the credentials by taking the View credentials action and then clicking the copy to clipboard icon on the right hand side.

IBM Streams Python setup

Developer setup

Developers install the streamsx package Python Package Index (PyPI) to
use this functionality:

pip install streamsx

If already installed upgrade to the latest version is recommended:

pip install --upgrade streamsx

A local install of IBM Streams is not required when:

	Using the Streams and Streaming Analytics REST bindings streamsx.rest.

	Devloping and submitting streaming applications using streamsx.topology.topology to Cloud Pak for Data or Streaming Analytics service on IBM Cloud.

	The environment variable JAVA_HOME must reference a Java JRE or JDK/SDK version 8 or higher.

A local install of IBM Streams is required when:

	Developing and submitting streaming applications using streamsx.topology.topology to IBM Streams 4.2, 4.3 distributed or standalone contexts.

	If set the environment variable JAVA_HOME must reference a Java JRE or JDK/SDK version 8 or higher, otherwise the Java install from $STREAMS_INSTALL/java is used.

	Creating SPL toolkits with Python primitive operators using streamsx.spl.spl decorators for use with 4.2, 4.3 distributed or standalone applications.

Warning

When using the streamsx package ensure that the environment variable
PYTHONPATH does not include a path ending with
com.ibm.streamsx.topology/opt/python/packages.
The IBM Streams environment configuration script streamsprofile.sh
modifies or sets PYTHONPATH to include the Python support
from the SPL topology toolkit shipped with the product. This was to
support Python before the streamsx package was available. The
recommendation is to unset PYTHONPATH or modify it not to
include the path to the topology toolkit.

Note

The streamsx package is self-contained and does not depend on any
SPL topology toolkit (com.ibm.streamsx.topology) installed
under $STREAMS_INSTALL/toolkits or on the SPL compiler’s (sc)
toolkit path. This is true at SPL compilation time and runtime.

Streaming Analytics service

The service instance has Anaconda installed with Python 3.6 as the
runtime environment and has PYTHONHOME Streams application environment variable
pre-configured.

Any streaming applications using Python must use Python 3.6 when
submitted to the service instance. The streamsx package must be installed locally and applications are submitted to the STREAMING_ANALYTICS_SERVICE context.

IBM Cloud Pak for Data

An IBM Streams service instance within Cloud Pak for Data has Anaconda installed with Python 3.6 as the
runtime environment and has PYTHONHOME Streams application environment variable pre-configured.

Any streaming applications using Python must use Python 3.6 when
submitted to the service instance.

Streaming applications can be submitted through Jupyter notebooks running in
Cloud Pak for Data projects. The streamsx package is preinstalled and applications are submitted to the DISTRIBUTED context.

Streaming applications can be submitted externally to the OpenShift cluster containing Cloud Pak for Data.
The streamsx package must be installed locally and applications are submitted to the DISTRIBUTED context. The specific environment variables depend
on if the Streams instance is in a integrated or standalone configuration. See DISTRIBUTED for details.

IBM Streams 4.2, 4.3

For a distributed cluster running Streams Python 3.7, 3.6 or 3.5
may be used.

Anaconda or Miniconda distributions may be used as the Python runtime, these have the advantage of being pre-built and including a number of standard packages.
Ananconda installs may be downloaded at: https://www.continuum.io/downloads .

If building Python from source then it must be built to support embedding
of the runtime with shared libraries (--enable-shared option to configure).

Distributed

For distributed the Streams application environment variable
PYTHONHOME must be set to the Python install path.

This is set using streamtool as:

streamtool setproperty --application-ev PYTHONHOME=path_to_python_install

The application environment variable may also be set using the Streams
console. The Instance Management view has an
Application Environment Variables section. Expanding the details
for that section allows modification of the set of environment
variables available to Streams applications.

The Python install path must be accessible on every application resource
that will execute Python code within a Streams application.

Note

The Python version used to declare and submit the application must compatible with the setting of PYTHONHOME in the instance. For example, if PYTHONHOME Streams application instance variable points to a Python 3.6 install, then Python 3.5 or 3.6 can be used to declare and submit the application.

Standalone

The environment PYTHONHOME must be set to the Python install path.

Bundle Python version compatibility

As of 1.13 Streams application bundles (sab files) invoking Python are binary
compatible with a range of Python releases when using Python 3.

The minimum verson supported is the version of Python used during bundle
creation.

The maximum version supported is the highest version of Python with a
proposed release schedule.

For example if a sab is built with Python 3.6 then it can be submitted
to a Streams instance using 3.6 or higher, up to & including 3.9 which is
the highest Python release with a proposed release schedule as of 1.13.

Note

Compatability across Python releases is dependent on Python’s
Stable Application Binary Inteface [https://docs.python.org/3/c-api/stable.html].

Restrictions and known bugs

	No support for nested parallel regions at sources, i.e. nested streamsx.topology.topology.Stream.set_parallel(), for example:

topo = Topology()
s = topo.source(S())
s.set_parallel(3).set_parallel(2)

In this example, set_parallel(3) is ignored.

	No support for nested types when defining stream schemas, for example:

class NamedTupleNestedTupleSchema(typing.NamedTuple):
 key: str
 spotted: SpottedSchema

	No support of collections of NamedTuple as stream schema, for example:

class NamedTupleListOfTupleSchema(typing.NamedTuple):
 spotted: typing.List[SpottedSchema]

	Python Composites (derived from streamsx.topology.composite.Composite) can have only one input port.

	No support to process window markers or final marker (end of stream) in Python Callables like in SPL operators

	No hook for drain processing in consistent region for Python Callables

 Python Module Index

 b |
 c |
 e |
 o |
 r |
 s |
 t

 		 	

 		
 b	

 	
 	
 streamsx.build	

 		 	

 		
 c	

 	
 	
 streamsx.topology.composite	

 	
 	
 streamsx.topology.context	

 		 	

 		
 e	

 	
 	
 streamsx.ec	

 		 	

 		
 o	

 	
 	
 streamsx.spl.op	

 		 	

 		
 r	

 	
 	
 streamsx.rest	

 	
 	
 streamsx.rest_primitives	

 		 	

 		
 s	

 	
 	
 streamsx.spl.spl	

 	
 	
 streamsx.topology.schema	

 	
 	
 streamsx.topology.state	

 		 	

 		
 t	

 	
 	
 streamsx.spl.toolkit	

 	
 	
 streamsx.spl.types	

 	
 	
 streamsx.topology	

 	
 	
 streamsx.topology.tester	

 	
 	
 streamsx.topology.tester_runtime	

 	
 	
 streamsx.topology.topology	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	activateOption (streamsx.rest_primitives.View attribute)

 	ActiveService (class in streamsx.rest_primitives)

 	ActiveVersion (class in streamsx.rest_primitives)

 	add() (streamsx.topology.context.JobConfig method)

 	add_condition() (streamsx.topology.tester.Tester method)

 	add_file_dependency() (streamsx.topology.topology.Topology method)

 	add_pip_package() (streamsx.topology.topology.Topology method)

 	add_toolkit() (in module streamsx.spl.toolkit)

 	add_toolkit_dependency() (in module streamsx.spl.toolkit)

 	aggregate() (streamsx.topology.topology.Window method)

 	aliased_as() (streamsx.topology.topology.Stream method)

 	all_ports_ready() (streamsx.spl.spl.PrimitiveOperator method)

 	ApplicationBundle (class in streamsx.rest_primitives)

 	ApplicationConfiguration (class in streamsx.rest_primitives)

 	
 	applicationName (streamsx.rest_primitives.Job attribute)

 	applicationResource (streamsx.rest_primitives.ResourceAllocation attribute)

 	architecture (streamsx.rest_primitives.ActiveVersion attribute)

 	(streamsx.rest_primitives.Installation attribute)

 	as_dict() (streamsx.topology.schema.StreamSchema method)

 	as_json() (streamsx.topology.topology.Stream method)

 	as_overlays() (streamsx.topology.context.JobConfig method)

 	as_string() (streamsx.topology.topology.Stream method)

 	as_tuple() (streamsx.topology.schema.StreamSchema method)

 	attribute() (streamsx.spl.op.Invoke method)

 	(streamsx.spl.op.Map method)

 	(streamsx.spl.op.Sink method)

 	(streamsx.spl.op.Source method)

 	autonomous() (streamsx.topology.topology.Stream method)

B

 	
 	BaseImage (class in streamsx.rest_primitives)

 	batch() (streamsx.topology.topology.Stream method)

 	Binary (streamsx.topology.schema.CommonSchema attribute)

 	BROADCAST (streamsx.topology.topology.Routing attribute)

 	bufferCapacitySeconds (streamsx.rest_primitives.View attribute)

 	bufferCapacityTuples (streamsx.rest_primitives.View attribute)

 	bufferCapacityUnits (streamsx.rest_primitives.View attribute)

 	
 	Buffered (streamsx.topology.topology.SubscribeConnection attribute)

 	build() (in module streamsx.topology.context)

 	BUILD_ARCHIVE (streamsx.topology.context.ContextTypes attribute)

 	build_version (streamsx.rest_primitives.ActiveVersion attribute)

 	buildPool (streamsx.rest_primitives.BaseImage attribute)

 	BuildService (class in streamsx.build)

 	buildVersion (streamsx.rest_primitives.Installation attribute)

 	BUNDLE (streamsx.topology.context.ContextTypes attribute)

C

 	
 	cancel() (streamsx.rest_primitives.Job method)

 	cancel_job() (streamsx.rest_primitives.StreamingAnalyticsService method)

 	cancel_job_button() (streamsx.topology.context.SubmissionResult method)

 	category() (streamsx.spl.op.Invoke property)

 	(streamsx.spl.op.Map property)

 	(streamsx.spl.op.Sink property)

 	(streamsx.spl.op.Source property)

 	(streamsx.topology.topology.Sink property)

 	(streamsx.topology.topology.Stream property)

 	channel() (in module streamsx.ec)

 	checkpoint_period() (streamsx.topology.topology.Topology property)

 	collectionTime (streamsx.rest_primitives.ViewItem attribute)

 	colocate() (streamsx.spl.op.Invoke method)

 	(streamsx.spl.op.Map method)

 	(streamsx.spl.op.Sink method)

 	(streamsx.spl.op.Source method)

 	(streamsx.topology.topology.Sink method)

 	(streamsx.topology.topology.Stream method)

 	comment() (streamsx.topology.context.JobConfig property)

 	
 	CommonSchema (class in streamsx.topology.schema)

 	complete() (streamsx.topology.topology.PendingStream method)

 	Composite (class in streamsx.topology.composite)

 	Condition (class in streamsx.topology.tester_runtime)

 	ConfigParams (class in streamsx.topology.context)

 	ConsistentRegionConfig (class in streamsx.topology.state)

 	ConsistentRegionConfig.Trigger (class in streamsx.topology.state)

 	contents() (streamsx.topology.tester.Tester method)

 	ContextTypes (class in streamsx.topology.context)

 	count() (streamsx.spl.types.Timestamp method)

 	Counter (streamsx.ec.MetricKind attribute)

 	create_application_configuration() (streamsx.rest_primitives.Instance method)

 	create_submission_parameter() (streamsx.topology.topology.Topology method)

 	creationTime (streamsx.rest_primitives.ApplicationConfiguration attribute)

 	(streamsx.rest_primitives.Domain attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	creationuser (streamsx.rest_primitives.Domain attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	CustomMetric (class in streamsx.ec)

D

 	
 	data (streamsx.rest_primitives.ViewItem attribute)

 	datetime() (streamsx.spl.types.Timestamp method)

 	definition_format_properties (streamsx.rest_primitives.ResourceTag attribute)

 	delete() (streamsx.rest_primitives.ApplicationConfiguration method)

 	dependencies() (streamsx.rest_primitives.Toolkit property)

 	description (streamsx.rest_primitives.ApplicationConfiguration attribute)

 	(streamsx.rest_primitives.Metric attribute)

 	(streamsx.rest_primitives.ResourceTag attribute)

 	(streamsx.rest_primitives.View attribute)

 	
 	Direct (streamsx.topology.topology.SubscribeConnection attribute)

 	display() (streamsx.rest_primitives.View method)

 	(streamsx.topology.topology.View method)

 	displayName (streamsx.rest_primitives.Resource attribute)

 	DISTRIBUTED (streamsx.topology.context.ContextTypes attribute)

 	Domain (class in streamsx.rest_primitives)

 	domain_id() (in module streamsx.ec)

E

 	
 	EDGE (streamsx.topology.context.ContextTypes attribute)

 	EDGE_BUNDLE (streamsx.topology.context.ContextTypes attribute)

 	edition_name (streamsx.rest_primitives.ActiveVersion attribute)

 	editionName (streamsx.rest_primitives.Installation attribute)

 	end_low_latency() (streamsx.topology.topology.Stream method)

 	end_parallel() (streamsx.topology.topology.Stream method)

 	eventual_result() (streamsx.topology.tester.Tester method)

 	exclude_packages (streamsx.topology.topology.Topology attribute)

 	ExportedStream (class in streamsx.rest_primitives)

 	
 	Expression (class in streamsx.spl.op)

 	expression() (streamsx.spl.op.Expression static method)

 	(streamsx.spl.op.Invoke method)

 	(streamsx.spl.op.Map method)

 	(streamsx.spl.op.Sink method)

 	(streamsx.spl.op.Source method)

 	extend() (streamsx.topology.schema.CommonSchema method)

 	(streamsx.topology.schema.StreamSchema method)

 	extracting() (in module streamsx.spl.spl)

F

 	
 	fetch_tuples() (streamsx.rest_primitives.View method)

 	(streamsx.topology.topology.View method)

 	filter (class in streamsx.spl.spl)

 	filter() (streamsx.topology.topology.Stream method)

 	flat_map() (streamsx.topology.topology.Stream method)

 	float32() (in module streamsx.spl.types)

 	float64() (in module streamsx.spl.types)

 	for_each (class in streamsx.spl.spl)

 	
 	for_each() (streamsx.topology.topology.Stream method)

 	FORCE_REMOTE_BUILD (streamsx.topology.context.ConfigParams attribute)

 	ForEach (class in streamsx.topology.composite)

 	from_datetime() (streamsx.spl.types.Timestamp static method)

 	from_overlays() (streamsx.topology.context.JobConfig static method)

 	from_time() (streamsx.spl.types.Timestamp static method)

 	full_product_version (streamsx.rest_primitives.ActiveVersion attribute)

 	fullProductVersion (streamsx.rest_primitives.Installation attribute)

G

 	
 	Gauge (streamsx.ec.MetricKind attribute)

 	get_active_services() (streamsx.rest_primitives.Domain method)

 	(streamsx.rest_primitives.Instance method)

 	get_application_configuration() (in module streamsx.ec)

 	get_application_configurations() (streamsx.rest_primitives.Instance method)

 	get_application_directory() (in module streamsx.ec)

 	get_base_images() (streamsx.build.BuildService method)

 	get_connections() (streamsx.rest_primitives.OperatorInputPort method)

 	(streamsx.rest_primitives.OperatorOutputPort method)

 	get_domain() (streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	(streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	(streamsx.rest_primitives.View method)

 	get_domains() (streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	get_exported_streams() (streamsx.rest_primitives.Instance method)

 	get_host() (streamsx.rest_primitives.Operator method)

 	(streamsx.rest_primitives.PE method)

 	get_hosts() (streamsx.rest_primitives.Domain method)

 	(streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	get_imported_streams() (streamsx.rest_primitives.Instance method)

 	get_input_ports() (streamsx.rest_primitives.Operator method)

 	get_installations() (streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	get_instance() (streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	(streamsx.rest_primitives.Job method)

 	(streamsx.rest_primitives.View method)

 	get_instance_status() (streamsx.rest_primitives.StreamingAnalyticsService method)

 	get_instances() (streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	(streamsx.rest_primitives.Domain method)

 	get_job() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Operator method)

 	(streamsx.rest_primitives.PE method)

 	(streamsx.rest_primitives.View method)

 	get_job_group() (streamsx.rest_primitives.Job method)

 	
 	get_job_groups() (streamsx.rest_primitives.Instance method)

 	get_jobs() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.ResourceAllocation method)

 	get_metrics() (streamsx.rest_primitives.Operator method)

 	(streamsx.rest_primitives.OperatorInputPort method)

 	(streamsx.rest_primitives.OperatorOutputPort method)

 	(streamsx.rest_primitives.PE method)

 	(streamsx.rest_primitives.Resource method)

 	get_operator_connections() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	get_operator_output_port() (streamsx.rest_primitives.ExportedStream method)

 	get_operators() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	get_output_ports() (streamsx.rest_primitives.Operator method)

 	get_pe() (streamsx.rest_primitives.Operator method)

 	get_pe_connections() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	get_pes() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	(streamsx.rest_primitives.ResourceAllocation method)

 	get_published_topics() (streamsx.rest_primitives.Instance method)

 	get_resource() (streamsx.rest_primitives.PE method)

 	(streamsx.rest_primitives.ResourceAllocation method)

 	(streamsx.rest_primitives.RestResource method)

 	get_resource_allocation() (streamsx.rest_primitives.PE method)

 	get_resource_allocations() (streamsx.rest_primitives.Domain method)

 	(streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	get_resources() (streamsx.build.BuildService method)

 	(streamsx.rest.StreamingAnalyticsConnection method)

 	(streamsx.rest.StreamsConnection method)

 	(streamsx.rest_primitives.Domain method)

 	get_streaming_analytics() (streamsx.rest.StreamingAnalyticsConnection method)

 	get_streams_version() (streamsx.topology.tester.Tester static method)

 	get_toolkit() (streamsx.build.BuildService method)

 	get_toolkits() (streamsx.build.BuildService method)

 	get_view_items() (streamsx.rest_primitives.View method)

 	get_views() (streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

H

 	
 	HASH_PARTITIONED (streamsx.topology.topology.Routing attribute)

 	health (streamsx.rest_primitives.Instance attribute)

 	(streamsx.rest_primitives.Job attribute)

 	(streamsx.rest_primitives.PE attribute)

 	
 	Host (class in streamsx.rest_primitives)

I

 	
 	id (streamsx.rest_primitives.BaseImage attribute)

 	(streamsx.rest_primitives.Domain attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	(streamsx.rest_primitives.Job attribute)

 	(streamsx.rest_primitives.OperatorConnection attribute)

 	(streamsx.rest_primitives.PE attribute)

 	(streamsx.rest_primitives.PEConnection attribute)

 	(streamsx.rest_primitives.Resource attribute)

 	(streamsx.rest_primitives.Toolkit attribute)

 	(streamsx.rest_primitives.View attribute)

 	ignore() (in module streamsx.spl.spl)

 	ImportedStream (class in streamsx.rest_primitives)

 	include_packages (streamsx.topology.topology.Topology attribute)

 	index() (streamsx.spl.types.Timestamp method)

 	indexWithinJob (streamsx.rest_primitives.Operator attribute)

 	(streamsx.rest_primitives.PE attribute)

 	indexWithinOperator (streamsx.rest_primitives.OperatorInputPort attribute)

 	(streamsx.rest_primitives.OperatorOutputPort attribute)

 	
 	input_port (class in streamsx.spl.spl)

 	Installation (class in streamsx.rest_primitives)

 	Instance (class in streamsx.rest_primitives)

 	instance_id() (in module streamsx.ec)

 	int16() (in module streamsx.spl.types)

 	int32() (in module streamsx.spl.types)

 	int64() (in module streamsx.spl.types)

 	int8() (in module streamsx.spl.types)

 	Invoke (class in streamsx.spl.op)

 	ipAddress (streamsx.rest_primitives.Host attribute)

 	(streamsx.rest_primitives.Resource attribute)

 	is_active() (in module streamsx.ec)

 	is_common() (in module streamsx.topology.schema)

 	is_complete() (streamsx.topology.topology.PendingStream method)

 	is_standalone() (in module streamsx.ec)

 	isolate() (streamsx.topology.topology.Stream method)

J

 	
 	Job (class in streamsx.rest_primitives)

 	job() (streamsx.topology.context.SubmissionResult property)

 	JOB_CONFIG (streamsx.topology.context.ConfigParams attribute)

 	
 	job_id() (in module streamsx.ec)

 	JobConfig (class in streamsx.topology.context)

 	jobGroup (streamsx.rest_primitives.Job attribute)

 	Json (streamsx.topology.schema.CommonSchema attribute)

K

 	
 	KEY_PARTITIONED (streamsx.topology.topology.Routing attribute)

L

 	
 	last() (streamsx.topology.topology.Stream method)

 	lastModifiedTime (streamsx.rest_primitives.ApplicationConfiguration attribute)

 	lastTimeRetrieved (streamsx.rest_primitives.Metric attribute)

 	launchCount (streamsx.rest_primitives.PE attribute)

 	leader (streamsx.rest_primitives.ActiveService attribute)

 	
 	local_channel() (in module streamsx.ec)

 	local_check() (streamsx.topology.tester.Tester method)

 	local_max_channels() (in module streamsx.ec)

 	logicalOperatorName (streamsx.rest_primitives.View attribute)

 	low_latency() (streamsx.topology.topology.Stream method)

M

 	
 	machine_id (streamsx.spl.types.Timestamp attribute)

 	machine_id() (streamsx.spl.types.Timestamp property)

 	main_composite() (in module streamsx.spl.op)

 	Map (class in streamsx.spl.op)

 	map (class in streamsx.spl.spl)

 	Map (class in streamsx.topology.composite)

 	map() (streamsx.topology.topology.Stream method)

 	max_channels() (in module streamsx.ec)

 	maximumTupleRate (streamsx.rest_primitives.View attribute)

 	
 	Metric (class in streamsx.rest_primitives)

 	MetricKind (class in streamsx.ec)

 	metricKind (streamsx.rest_primitives.Metric attribute)

 	metricType (streamsx.rest_primitives.Metric attribute)

 	minimum_os_base_version (streamsx.rest_primitives.ActiveVersion attribute)

 	minimum_os_patch_version (streamsx.rest_primitives.ActiveVersion attribute)

 	minimum_streams_version() (streamsx.topology.tester.Tester static method)

 	minimumOSBaseVersion (streamsx.rest_primitives.Installation attribute)

 	minimumOSPatchVersion (streamsx.rest_primitives.Installation attribute)

N

 	
 	name (streamsx.rest_primitives.ApplicationConfiguration attribute)

 	(streamsx.rest_primitives.BaseImage attribute)

 	(streamsx.rest_primitives.Host attribute)

 	(streamsx.rest_primitives.Job attribute)

 	(streamsx.rest_primitives.Metric attribute)

 	(streamsx.rest_primitives.Operator attribute)

 	(streamsx.rest_primitives.OperatorInputPort attribute)

 	(streamsx.rest_primitives.OperatorOutputPort attribute)

 	(streamsx.rest_primitives.ResourceTag attribute)

 	(streamsx.rest_primitives.RestResource attribute)

 	(streamsx.rest_primitives.Toolkit attribute)

 	(streamsx.rest_primitives.Toolkit.Dependency attribute)

 	(streamsx.rest_primitives.View attribute)

 	
 	name() (streamsx.topology.topology.Stream property)

 	(streamsx.topology.topology.Topology property)

 	name_to_runtime_id (streamsx.topology.topology.Topology attribute)

 	namespace() (streamsx.topology.topology.Topology property)

 	nanoseconds (streamsx.spl.types.Timestamp attribute)

 	nanoseconds() (streamsx.spl.types.Timestamp property)

 	now() (streamsx.spl.types.Timestamp static method)

 	null() (in module streamsx.spl.types)

O

 	
 	of_definition() (streamsx.rest.StreamingAnalyticsConnection static method)

 	of_endpoint() (streamsx.build.BuildService static method)

 	(streamsx.rest_primitives.Instance static method)

 	of_service() (streamsx.build.BuildService static method)

 	(streamsx.rest_primitives.Instance static method)

 	Operator (class in streamsx.rest_primitives)

 	OPERATOR_DRIVEN (streamsx.topology.state.ConsistentRegionConfig.Trigger attribute)

 	operator_driven() (streamsx.topology.state.ConsistentRegionConfig static method)

 	OperatorConnection (class in streamsx.rest_primitives)

 	
 	OperatorInputPort (class in streamsx.rest_primitives)

 	operatorKind (streamsx.rest_primitives.Operator attribute)

 	OperatorOutputPort (class in streamsx.rest_primitives)

 	optionalConnections (streamsx.rest_primitives.PE attribute)

 	output() (streamsx.spl.op.Invoke method)

 	(streamsx.spl.op.Map method)

 	(streamsx.spl.op.Sink method)

 	(streamsx.spl.op.Source method)

 	owner (streamsx.rest_primitives.Instance attribute)

P

 	
 	parallel() (streamsx.topology.topology.Stream method)

 	params() (streamsx.spl.op.Invoke property)

 	(streamsx.spl.op.Map property)

 	(streamsx.spl.op.Sink property)

 	(streamsx.spl.op.Source property)

 	partition() (streamsx.topology.topology.Window method)

 	path (streamsx.rest_primitives.Toolkit attribute)

 	PE (class in streamsx.rest_primitives)

 	pe_id() (in module streamsx.ec)

 	PEConnection (class in streamsx.rest_primitives)

 	PendingStream (class in streamsx.topology.topology)

 	pendingTracingLevel (streamsx.rest_primitives.PE attribute)

 	PERIODIC (streamsx.topology.state.ConsistentRegionConfig.Trigger attribute)

 	periodic() (streamsx.topology.state.ConsistentRegionConfig static method)

 	populate() (streamsx.topology.composite.ForEach method)

 	(streamsx.topology.composite.Map method)

 	(streamsx.topology.composite.Source method)

 	
 	prefix (streamsx.rest_primitives.BaseImage attribute)

 	primitive_operator (class in streamsx.spl.spl)

 	PrimitiveOperator (class in streamsx.spl.spl)

 	print() (streamsx.topology.topology.Stream method)

 	processId (streamsx.rest_primitives.ActiveService attribute)

 	(streamsx.rest_primitives.PE attribute)

 	processorCount (streamsx.rest_primitives.Host attribute)

 	product_name (streamsx.rest_primitives.ActiveVersion attribute)

 	product_version (streamsx.rest_primitives.ActiveVersion attribute)

 	productName (streamsx.rest_primitives.Installation attribute)

 	productVersion (streamsx.rest_primitives.Installation attribute)

 	properties (streamsx.rest_primitives.ApplicationConfiguration attribute)

 	properties_definition (streamsx.rest_primitives.ResourceTag attribute)

 	publish() (streamsx.topology.topology.Stream method)

 	PublishedTopic (class in streamsx.rest_primitives)

 	Python (streamsx.topology.schema.CommonSchema attribute)

R

 	
 	raw_overlay() (streamsx.topology.context.JobConfig property)

 	refresh() (streamsx.rest_primitives.ActiveService method)

 	(streamsx.rest_primitives.ApplicationBundle method)

 	(streamsx.rest_primitives.ApplicationConfiguration method)

 	(streamsx.rest_primitives.BaseImage method)

 	(streamsx.rest_primitives.Domain method)

 	(streamsx.rest_primitives.ExportedStream method)

 	(streamsx.rest_primitives.Host method)

 	(streamsx.rest_primitives.ImportedStream method)

 	(streamsx.rest_primitives.Installation method)

 	(streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.Job method)

 	(streamsx.rest_primitives.Metric method)

 	(streamsx.rest_primitives.Operator method)

 	(streamsx.rest_primitives.OperatorConnection method)

 	(streamsx.rest_primitives.OperatorInputPort method)

 	(streamsx.rest_primitives.OperatorOutputPort method)

 	(streamsx.rest_primitives.PE method)

 	(streamsx.rest_primitives.PEConnection method)

 	(streamsx.rest_primitives.Resource method)

 	(streamsx.rest_primitives.ResourceAllocation method)

 	(streamsx.rest_primitives.RestResource method)

 	(streamsx.rest_primitives.Toolkit method)

 	(streamsx.rest_primitives.View method)

 	(streamsx.rest_primitives.ViewItem method)

 	registry (streamsx.rest_primitives.BaseImage attribute)

 	relocatable (streamsx.rest_primitives.PE attribute)

 	require_streams_version() (streamsx.topology.tester.Tester static method)

 	required (streamsx.rest_primitives.OperatorConnection attribute)

 	(streamsx.rest_primitives.PEConnection attribute)

 	requiredConnections (streamsx.rest_primitives.PE attribute)

 	requiredProductVersion (streamsx.rest_primitives.Toolkit attribute)

 	reserved (streamsx.rest_primitives.ResourceTag attribute)

 	resets() (streamsx.topology.tester.Tester method)

 	Resource (class in streamsx.rest_primitives)

 	resource (streamsx.rest_primitives.RestResource attribute)

 	resource_tags() (streamsx.spl.op.Invoke property)

 	(streamsx.spl.op.Map property)

 	(streamsx.spl.op.Sink property)

 	(streamsx.spl.op.Source property)

 	(streamsx.topology.topology.Sink property)

 	(streamsx.topology.topology.Stream property)

 	
 	resource_url() (streamsx.build.BuildService property)

 	(streamsx.rest.StreamingAnalyticsConnection property)

 	(streamsx.rest.StreamsConnection property)

 	ResourceAllocation (class in streamsx.rest_primitives)

 	ResourceTag (class in streamsx.rest_primitives)

 	resourceType (streamsx.rest_primitives.ActiveService attribute)

 	(streamsx.rest_primitives.BaseImage attribute)

 	(streamsx.rest_primitives.Domain attribute)

 	(streamsx.rest_primitives.ExportedStream attribute)

 	(streamsx.rest_primitives.Host attribute)

 	(streamsx.rest_primitives.ImportedStream attribute)

 	(streamsx.rest_primitives.Installation attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	(streamsx.rest_primitives.Job attribute)

 	(streamsx.rest_primitives.Metric attribute)

 	(streamsx.rest_primitives.Operator attribute)

 	(streamsx.rest_primitives.OperatorConnection attribute)

 	(streamsx.rest_primitives.OperatorInputPort attribute)

 	(streamsx.rest_primitives.OperatorOutputPort attribute)

 	(streamsx.rest_primitives.PE attribute)

 	(streamsx.rest_primitives.PEConnection attribute)

 	(streamsx.rest_primitives.ResourceAllocation attribute)

 	(streamsx.rest_primitives.Toolkit attribute)

 	(streamsx.rest_primitives.View attribute)

 	(streamsx.rest_primitives.ViewItem attribute)

 	restartable (streamsx.rest_primitives.PE attribute)

 	restid (streamsx.rest_primitives.BaseImage attribute)

 	RestResource (class in streamsx.rest_primitives)

 	restrictedTags (streamsx.rest_primitives.Host attribute)

 	result (streamsx.topology.tester.Tester attribute)

 	retrieve_console_log() (streamsx.rest_primitives.PE method)

 	retrieve_log_trace() (streamsx.rest_primitives.Job method)

 	retrieve_trace() (streamsx.rest_primitives.PE method)

 	ROUND_ROBIN (streamsx.topology.topology.Routing attribute)

 	Routing (class in streamsx.topology.topology)

 	rstring() (in module streamsx.spl.types)

 	run() (in module streamsx.topology.context)

 	run_for() (streamsx.topology.tester.Tester method)

 	runtime_id() (streamsx.topology.topology.Stream property)

S

 	
 	SC_OPTIONS (streamsx.topology.context.ConfigParams attribute)

 	schedulerStatus (streamsx.rest_primitives.ResourceAllocation attribute)

 	schema (streamsx.rest_primitives.PublishedTopic attribute)

 	schema() (streamsx.topology.schema.CommonSchema method)

 	(streamsx.topology.schema.StreamSchema method)

 	seconds (streamsx.spl.types.Timestamp attribute)

 	seconds() (streamsx.spl.types.Timestamp property)

 	SERVICE_DEFINITION (streamsx.topology.context.ConfigParams attribute)

 	SERVICE_NAME (streamsx.topology.context.ConfigParams attribute)

 	services (streamsx.rest_primitives.Host attribute)

 	session (streamsx.rest.StreamsConnection attribute)

 	set_consistent() (streamsx.topology.topology.Stream method)

 	set_parallel() (streamsx.topology.topology.Stream method)

 	setup_distributed() (streamsx.topology.tester.Tester static method)

 	setup_standalone() (streamsx.topology.tester.Tester static method)

 	setup_streaming_analytics() (streamsx.topology.tester.Tester static method)

 	shutdown() (in module streamsx.ec)

 	Sink (class in streamsx.spl.op)

 	(class in streamsx.topology.topology)

 	Source (class in streamsx.spl.op)

 	source (class in streamsx.spl.spl)

 	Source (class in streamsx.topology.composite)

 	source() (streamsx.topology.topology.Topology method)

 	split() (streamsx.topology.topology.Stream method)

 	SSL_VERIFY (streamsx.topology.context.ConfigParams attribute)

 	STANDALONE (streamsx.topology.context.ContextTypes attribute)

 	start_data_fetch() (streamsx.rest_primitives.View method)

 	(streamsx.topology.topology.View method)

 	start_instance() (streamsx.rest_primitives.StreamingAnalyticsService method)

 	startedBy (streamsx.rest_primitives.Job attribute)

 	startTime (streamsx.rest_primitives.ActiveService attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	status (streamsx.rest_primitives.ActiveService attribute)

 	(streamsx.rest_primitives.Domain attribute)

 	(streamsx.rest_primitives.Host attribute)

 	(streamsx.rest_primitives.Instance attribute)

 	(streamsx.rest_primitives.Job attribute)

 	(streamsx.rest_primitives.PE attribute)

 	(streamsx.rest_primitives.PEConnection attribute)

 	(streamsx.rest_primitives.Resource attribute)

 	(streamsx.rest_primitives.ResourceAllocation attribute)

 	statusReason (streamsx.rest_primitives.PE attribute)

 	stop_data_fetch() (streamsx.rest_primitives.View method)

 	(streamsx.topology.topology.View method)

 	
 	stop_instance() (streamsx.rest_primitives.StreamingAnalyticsService method)

 	Stream (class in streamsx.topology.topology)

 	stream() (streamsx.spl.op.Map property)

 	(streamsx.spl.op.Source property)

 	STREAMING_ANALYTICS_SERVICE (streamsx.topology.context.ContextTypes attribute)

 	StreamingAnalyticsConnection (class in streamsx.rest)

 	StreamingAnalyticsService (class in streamsx.rest_primitives)

 	streamName (streamsx.rest_primitives.OperatorOutputPort attribute)

 	streams() (streamsx.topology.topology.Topology property)

 	STREAMS_CONNECTION (streamsx.topology.context.ConfigParams attribute)

 	streams_connection (streamsx.topology.tester.Tester attribute)

 	StreamSchema (class in streamsx.topology.schema)

 	StreamsConnection (class in streamsx.rest)

 	streamsx.build (module)

 	streamsx.ec (module)

 	streamsx.rest (module)

 	streamsx.rest_primitives (module)

 	streamsx.spl.op (module)

 	streamsx.spl.spl (module)

 	streamsx.spl.toolkit (module)

 	streamsx.spl.types (module)

 	streamsx.topology (module)

 	streamsx.topology.composite (module)

 	streamsx.topology.context (module)

 	streamsx.topology.schema (module)

 	streamsx.topology.state (module)

 	streamsx.topology.tester (module)

 	streamsx.topology.tester_runtime (module)

 	streamsx.topology.topology (module)

 	String (streamsx.topology.schema.CommonSchema attribute)

 	style() (streamsx.topology.schema.StreamSchema property)

 	submission_parameters() (streamsx.topology.context.JobConfig property)

 	submission_result (streamsx.topology.tester.Tester attribute)

 	SubmissionResult (class in streamsx.topology.context)

 	submit() (in module streamsx.topology.context)

 	(streamsx.spl.spl.PrimitiveOperator method)

 	submit_job() (streamsx.rest_primitives.ApplicationBundle method)

 	(streamsx.rest_primitives.Instance method)

 	(streamsx.rest_primitives.StreamingAnalyticsService method)

 	submitTime (streamsx.rest_primitives.Job attribute)

 	subscribe() (streamsx.topology.topology.Topology method)

 	SubscribeConnection (class in streamsx.topology.topology)

T

 	
 	tag (streamsx.rest_primitives.BaseImage attribute)

 	(streamsx.rest_primitives.Host attribute)

 	tags (streamsx.rest_primitives.Resource attribute)

 	target_pe_count() (streamsx.topology.context.JobConfig property)

 	test() (streamsx.topology.tester.Tester method)

 	Tester (class in streamsx.topology.tester)

 	Time (streamsx.ec.MetricKind attribute)

 	time() (streamsx.spl.types.Timestamp method)

 	Timestamp (class in streamsx.spl.types)

 	Toolkit (class in streamsx.rest_primitives)

 	
 	TOOLKIT (streamsx.topology.context.ContextTypes attribute)

 	Toolkit.Dependency (class in streamsx.rest_primitives)

 	topic (streamsx.rest_primitives.PublishedTopic attribute)

 	Topology (class in streamsx.topology.topology)

 	tracing() (streamsx.topology.context.JobConfig property)

 	tracingLevel (streamsx.rest_primitives.PE attribute)

 	trigger() (streamsx.topology.topology.Window method)

 	tuple_check() (streamsx.topology.tester.Tester method)

 	tuple_count() (streamsx.topology.tester.Tester method)

 	type (streamsx.rest_primitives.ActiveService attribute)

 	type_checking (streamsx.topology.topology.Topology attribute)

U

 	
 	uint16() (in module streamsx.spl.types)

 	uint32() (in module streamsx.spl.types)

 	uint64() (in module streamsx.spl.types)

 	uint8() (in module streamsx.spl.types)

 	
 	union() (streamsx.topology.topology.Stream method)

 	update() (streamsx.rest_primitives.ApplicationConfiguration method)

 	update_operators() (streamsx.rest_primitives.Job method)

 	upload_bundle() (streamsx.rest_primitives.Instance method)

 	upload_toolkit() (streamsx.build.BuildService method)

V

 	
 	value (streamsx.rest_primitives.Metric attribute)

 	value() (streamsx.ec.CustomMetric property)

 	VCAP_SERVICES (streamsx.topology.context.ConfigParams attribute)

 	version (streamsx.rest_primitives.Toolkit attribute)

 	(streamsx.rest_primitives.Toolkit.Dependency attribute)

 	
 	View (class in streamsx.rest_primitives)

 	(class in streamsx.topology.topology)

 	view() (streamsx.topology.topology.Stream method)

 	ViewItem (class in streamsx.rest_primitives)

W

 	
 	Window (class in streamsx.topology.topology)

X

 	
 	XML (streamsx.topology.schema.CommonSchema attribute)

 nav.xhtml

 Table of Contents

 		
 IBM Streams Python support

 		
 streamsx.topology

 		
 Overview

 		
 Creating Applications

 		
 Extensions

 		
 Microservices

 		
 Publish-subscribe overview

 		
 streamsx.topology.topology

 		
 Overview

 		
 Topology

 		
 Stream

 		
 Stream processing

 		
 Callables

 		
 Stateful operations

 		
 Initialization and shutdown

 		
 Tuple semantics

 		
 Application log and trace

 		
 SPL operators

 		
 Module contents

 		
 Module contents

 		
 streamsx.topology.context

 		
 Module contents

 		
 streamsx.topology.schema

 		
 Overview

 		
 Structured schemas

 		
 Defining a stream’s schema

 		
 Module contents

 		
 streamsx.topology.state

 		
 Overview

 		
 Stateful callables

 		
 Module contents

 		
 streamsx.topology.composite

 		
 Module contents

 		
 streamsx.topology.tester

 		
 Overview

 		
 Module contents

 		
 streamsx.topology.tester_runtime

 		
 Overview

 		
 Module contents

 		
 streamsx.ec

 		
 Overview

 		
 Distributed

 		
 Standalone

 		
 Application log and trace

 		
 Application log

 		
 Application trace

 		
 Execution Context

 		
 Module contents

 		
 streamsx.spl.op

 		
 Invoking SPL Operators

 		
 Values for operator clauses

 		
 Param clause

 		
 Output clause

 		
 Module contents

 		
 streamsx.spl.types

 		
 Overview

 		
 Module contents

 		
 streamsx.spl.toolkit

 		
 Overview

 		
 Module contents

 		
 streamsx.spl.spl

 		
 Overview

 		
 Python classes as SPL operators

 		
 Overview

 		
 Operator state

 		
 Operator initialization & shutdown

 		
 Application log and trace

 		
 Python functions as SPL operators

 		
 Processing SPL tuples in Python

 		
 Overview

 		
 Tuple Passing Styles

 		
 Selecting the style

 		
 Submission of SPL tuples from Python

 		
 None

 		
 Python tuple

 		
 Python dictionary

 		
 Python list

 		
 Module contents

 		
 streamsx.build

 		
 Streams Build REST API

 		
 Cloud Pak for Data

 		
 Module contents

 		
 streamsx.rest

 		
 Streams REST API

 		
 IBM Cloud Pak for Data (Streams 5)

 		
 IBM Streams On-premises (4.2, 4.3)

 		
 Streaming Analytics REST API

 		
 Module contents

 		
 streamsx.rest_primitives

 		
 Overview

 		
 Module contents

 		
 spl-python-extract

 		
 Overview

 		
 Usage

 		
 SPL Python primitive operators

 		
 streamsx-info

 		
 Overview

 		
 Usage

 		
 streamsx-runner

 		
 Overview

 		
 Streaming Analytics service

 		
 Job submission

 		
 Bundle creation

 		
 Usage

 		
 Submitting to Streaming Analytics service

 		
 Python applications

 		
 SPL applications

 		
 Streams application bundles

 		
 Job options

 		
 Creating Streams application bundles

 		
 streamsx-sc

 		
 Overview

 		
 Cloud Pak for Data configuration

 		
 Usage

 		
 Toolkits

 		
 streamsx-service

 		
 Overview

 		
 Usage

 		
 Controlling a Streaming Analytics service

 		
 streamsx-streamtool

 		
 Overview

 		
 Cloud Pak for Data configuration

 		
 Usage

 		
 submitjob

 		
 canceljob

 		
 lsjobs

 		
 lsappconfig

 		
 mkappconfig

 		
 rmappconfig

 		
 chappconfig

 		
 getappconfig

 		
 lstoolkit

 		
 rmtoolkit

 		
 uploadtoolkit

 		
 updateoperators

 		
 IBM Streaming Analytics service

 		
 Overview

 		
 Package support

 		
 Accessing a service

 		
 VCAP services

 		
 Service definition

 		
 IBM Streams Python setup

 		
 Developer setup

 		
 Streaming Analytics service

 		
 IBM Cloud Pak for Data

 		
 IBM Streams 4.2, 4.3

 		
 Distributed

 		
 Standalone

 		
 Bundle Python version compatibility

 		
 Restrictions and known bugs

_static/file.png

_static/minus.png

_static/plus.png

